66 research outputs found
Peggy Pearson in a Junior Recital
This is the program for the junior recital of Peggy Pearson, who performed on piano and flute. Pianist Martha Lancaster assisted the performance. The recital took place on February 15, 1973
Peggy Lynn Pearson in a Senior Piano Recital
This is the program for the senior piano recital of Peggy Lynn Pearson. This recital took place on April 16, 1974, in the Mitchelll Hall Auditorium
Towanann Payne in a Senior Voice Recital
This is the program for the senior voice recital of soprano Towanann Payne. Peggy Pearson assisted on piano and flute; Debbie Huggs assisted on Clarinet. The recital took place on December 4, 1973, at 8:00 p.m., in Mitchell Auditorium
Richard Askin and Towanann Payne in a Junior Recital
This is the program for the joint junior recital of tenor Richard Askin and soprano Towanann Payne. The recital was held on December 7, 1972, at 5:00. Cannon Lamont accompanied Askin on piano; Peggy Pearson accompanied Towanann Payne on piano
The epidemic of extended-spectrum-beta-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx
The Escherichia coli sequence type 131 (ST131) clone is notorious for extraintestinal infections, fluoroquinolone resistance, and extended-spectrum beta-lactamase (ESBL) production, attributable to a CTX-M-15-encoding mobile element. Here, we applied pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing to reconstruct the evolutionary history of the ST131 clone. PFGE-based cluster analyses suggested that both fluoroquinolone resistance and ESBL production had been acquired by multiple ST131 sublineages through independent genetic events. In contrast, the more robust whole-genome-sequence-based phylogenomic analysis revealed that fluoroquinolone resistance was confined almost entirely to a single, rapidly expanding ST131 subclone, designated H30-R. Strikingly, 91% of the CTX-M-15-producing isolates also belonged to a single, well-defined clade nested within H30-R, which was named H30-Rx due to its more extensive resistance. Despite its tight clonal relationship with H30Rx, the CTX-M-15 mobile element was inserted variably in plasmid and chromosomal locations within the H30-Rx genome. Screening of a large collection of recent clinical E. coli isolates both confirmed the global clonal expansion of H30-Rx and revealed its disproportionate association with sepsis (relative risk, 7.5; P < 0.001). Together, these results suggest that the high prevalence of CTX-M-15 production among ST131 isolates is due primarily to the expansion of a single, highly virulent subclone, H30-Rx. IMPORTANCE We applied an advanced genomic approach to study the recent evolutionary history of one of the most important Escherichia coli strains in circulation today. This strain, called sequence type 131 (ST131), causes multidrug-resistant bladder, kidney, and bloodstream infections around the world. The rising prevalence of antibiotic resistance in E. coli is making these infections more difficult to treat and is leading to increased mortality. Past studies suggested that many different ST131 strains gained resistance to extended-spectrum cephalosporins independently. In contrast, our research indicates that most extended-spectrum-cephalosporin-resistant ST131 strains belong to a single highly pathogenic subclone, called H30-Rx. The clonal nature of H30-Rx may provide opportunities for vaccine or transmission prevention-based control strategies, which could gain importance as H30-Rx and other extraintestinal pathogenic E. coli subclones become resistant to our best antibiotics
The epidemic of extended-spectrum-β-lactamase-producing Escherichia coli ST131 is driven by a single highly pathogenic subclone, H30-Rx
The Escherichia coli sequence type 131 (ST131) clone is notorious for extraintestinal infections, fluoroquinolone resistance, and extended-spectrum beta-lactamase (ESBL) production, attributable to a CTX-M-15-encoding mobile element. Here, we applied pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing to reconstruct the evolutionary history of the ST131 clone. PFGE-based cluster analyses suggested that both fluoroquinolone resistance and ESBL production had been acquired by multiple ST131 sublineages through independent genetic events. In contrast, the more robust whole-genome-sequence-based phylogenomic analysis revealed that fluoroquinolone resistance was confined almost entirely to a single, rapidly expanding ST131 subclone, designated H30-R. Strikingly, 91% of the CTX-M-15-producing isolates also belonged to a single, well-defined clade nested within H30-R, which was namedH30-Rx due to its more extensive resistance. Despite its tight clonal relationship with H30Rx, the CTX-M-15 mobile element was inserted variably in plasmid and chromosomal locations within the H30-Rx genome. Screening of a large collection of recent clinical E. coli isolates both confirmed the global clonal expansion of H30-Rx and revealed its disproportionate association with sepsis (relative risk, 7.5; P \u3c 0.001). Together, these results suggest that the high prevalence of CTX-M-15 production among ST131 isolates is due primarily to the expansion of a single, highly virulent subclone, H30-Rx
MSH3 polymorphisms and protein levels affect CAG repeat instability in huntington's disease mice
Expansions of trinucleotide CAG/CTG repeats in somatic tissues are thought to contribute to ongoing disease progression through an affected individual's life with Huntington's disease or myotonic dystrophy. Broad ranges of repeat instability arise between individuals with expanded repeats, suggesting the existence of modifiers of repeat instability. Mice with expanded CAG/CTG repeats show variable levels of instability depending upon mouse strain. However, to date the genetic modifiers underlying these differences have not been identified. We show that in liver and striatum the R6/1 Huntington's disease (HD) (CAG)~100 transgene, when present in a congenic C57BL/6J (B6) background, incurred expansion-biased repeat mutations, whereas the repeat was stable in a congenic BALB/cByJ (CBy) background. Reciprocal congenic mice revealed the Msh3 gene as the determinant for the differences in repeat instability. Expansion bias was observed in congenic mice homozygous for the B6 Msh3 gene on a CBy background, while the CAG tract was stabilized in congenics homozygous for the CBy Msh3 gene on a B6 background. The CAG stabilization was as dramatic as genetic deficiency of Msh2. The B6 and CBy Msh3 genes had identical promoters but differed in coding regions and showed strikingly different protein levels. B6 MSH3 variant protein is highly expressed and associated with CAG expansions, while the CBy MSH3 variant protein is expressed at barely detectable levels, associating with CAG stability. The DHFR protein, which is divergently transcribed from a promoter shared by the Msh3 gene, did not show varied levels between mouse strains. Thus, naturally occurring MSH3 protein polymorphisms are modifiers of CAG repeat instability, likely through variable MSH3 protein stability. Since evidence supports that somatic CAG instability is a modifier and predictor of disease, our data are consistent with the hypothesis that variable levels of CAG instability associated with polymorphisms of DNA repair genes may have prognostic implications for various repeat-associated diseases
Language barrier and its relationship to diabetes and diabetic retinopathy
10.1186/1471-2458-12-781BMC Public Health121
This work was supported by The Department of the Interior Alaska Climate Adaptation Science Center, which is managed by the USGS National Climate Adaptation Science Center.
53 pages : color illustrations, color maps ; 28 cmThis report is designed as a living document to inform the community, decision makers, and academics and to serve as a learning and teaching tool. The nine key messages summarized on pages 6 and 7 are intended for use as a quick reference. Unique for this type of report, these key messages highlight actions by Juneau's civil society, including local nonprofit organizations.We thank the City and Borough of Juneau (CBJ) for its support in bringing this vital information on climate change
to the Juneau community and to others. Thanks especially to all the co-authors and other contributors. The
inclusion of such a diverse array of material, including local knowledge, was made possible by the many elders,
scientists, and local experts who contributed their time and expertise. The report is online at acrc.alaska.edu/
juneau-climate-report. It is an honor to be the lead editor and project manager for this critical effort. We have a
chance to save our world from the most extreme effects of climate change. Let us take it.
Gunalchéesh, sincerely,
James E. Powell (Jim), PhD, Alaska Coastal Rainforest Center, UASWelcome / Thomas F. Thornton -- Juneau's climate report: History and background / Bruce Botelho -- Using this report -- Acknowledgements / James E. Powell -- A regional Indigenous perspective on adaptation: The Central Council of Tlingit & Haida Indian Tribes of Alaska's Climate Change Adaptation Plan / Raymond Paddock -- Nine key messages -- What we're experiencing: Atmospheric, marine, terrestrial, and ecological effects. Climate. Setting and seasons / Tom Ainsworth -- More precipitation / Rick Thoman -- Higher temperatures / Rich Thoman -- Less snowfall / Eran Hood -- Ocean. Surface uplift and sea level rise / Eran Hood -- Extensive effects of a warming ocean / Heidi Pearson -- Increasing ocean acidification / Robert Foy -- Land. More landslides / Sonia Nagorski & Aaron Jacobs -- Mendenhall Glacier continues to retreat / Jason Amundson -- Tongass Forest impacts and carbon / Dave D'Amore -- Animals. Terrestrial vertebrates in A¿¿ak'w & T'aak¿łu Aani¿¿ / Richard Carstensen -- Three animals as indicators of change / Richard Carstensen -- Insects / Bob Armstrong -- What we're doing: Community response. Upgrading ifrastructure and mitigation / Katie Koester -- Upgrading utilities and other energy consumers / Alec Mesdag -- Growing demand for hydropower / Duff Mitchell -- Leading a shift in transportation / Duff Mitchell -- Maintaining mental health through community and recreation / Linda Kruger & Kevin Maier -- Food security / Darren Snyder & Jim Powell -- Large cruise ship air emissions / Jim Powell -- Tourists' views on climate change mitigation / Jim Powell -- Lowering greenhouse gas emissions / Jim Powell & Peggy Wilcox -- Residents taking action / Andy Romanoff & Jim Powell -- Summary and Recommendations -- References -- Graphics and data sources -- Appendix: Juneau nonprofit climate change organization
Common Genetic Variation And Age at Onset Of Anorexia Nervosa
Background Genetics and biology may influence the age at onset of anorexia nervosa (AN). The aims of this study were to determine whether common genetic variation contributes to AN age at onset and to investigate the genetic associations between age at onset of AN and age at menarche. Methods A secondary analysis of the Psychiatric Genomics Consortium genome-wide association study (GWAS) of AN was performed which included 9,335 cases and 31,981 screened controls, all from European ancestries. We conducted GWASs of age at onset, early-onset AN (< 13 years), and typical-onset AN, and genetic correlation, genetic risk score, and Mendelian randomization analyses. Results Two loci were genome-wide significant in the typical-onset AN GWAS. Heritability estimates (SNP-h2) were 0.01-0.04 for age at onset, 0.16-0.25 for early-onset AN, and 0.17-0.25 for typical-onset AN. Early- and typical-onset AN showed distinct genetic correlation patterns with putative risk factors for AN. Specifically, early-onset AN was significantly genetically correlated with younger age at menarche, and typical-onset AN was significantly negatively genetically correlated with anthropometric traits. Genetic risk scores for age at onset and early-onset AN estimated from independent GWASs significantly predicted age at onset. Mendelian randomization analysis suggested a causal link between younger age at menarche and early-onset AN. Conclusions Our results provide evidence consistent with a common variant genetic basis for age at onset and implicate biological pathways regulating menarche and reproduction.Peer reviewe
- …