3 research outputs found

    RNA-binding protein ELAVL4/HuD ameliorates Alzheimer's disease-related molecular changes in human iPSC-derived neurons

    No full text
    The RNA binding protein ELAVL4/HuD regulates the translation and splicing of multiple Alzheimer's disease (AD) candidate genes. We generated ELAVL4 knockout (KO) human induced pluripotent stem cell-derived neurons to study the effect that ELAVL4 has on AD-related cellular phenotypes. ELAVL4 KO significantly increased the levels of specific APP isoforms and intracellular phosphorylated tau, molecular changes that are related to the pathological hallmarks of AD. Overexpression of ELAVL4 in wild-type neurons and rescue experiments in ELAVL4 KO cells showed opposite effects and also led to a reduction of the extracellular amyloid-beta (Aβ)42/40 ratio. All these observations were made in familial AD (fAD) and fAD-corrected neurons. To gain insight into the molecular cascades involved in neuronal ELAVL4 signaling, we conducted pathway and upstream regulator analyses of transcriptomic and proteomic data from the generated neurons. These analyses revealed that ELAVL4 affects multiple biological pathways linked to AD, including those involved in synaptic function, as well as gene expression downstream of APP and tau signaling. The analyses also suggest that ELAVL4 expression is regulated by insulin receptor-FOXO1 signaling in neurons. Taken together, ELAVL4 expression ameliorates AD-related molecular changes in neurons and affects multiple synaptic pathways, making it a promising target for novel drug development

    Regulation of IκBβ Expression in Testis

    No full text
    IκBα and IκBβ are regulators of the nuclear factor-κB (NF-κB) transcription factor family. Both IκBs bind to the same NF-κB dimers and are widely expressed in different cells and tissues. To better understand how these two IκB isoforms differ biologically, we have characterized the expression of IκBβ in testis, a tissue in which IκBα is only minimally expressed. We have found that IκBβ expression is localized within the haploid spermatid stages of spermatogenesis and follows the expression of nuclear NF-κB. IκBβ expression in haploid spermatids is likely regulated by Sox family proteins, members of which are also expressed within spermatids. We have shown that both SRY and Sox-5 can bind to multiple Sox binding sites found within the IκBβ promoter and can enhance transcription of a reporter gene in transient transfection assays. We also demonstrate that IκBβ mRNA is strongly expressed in developing male gonads. These results therefore suggest that IκBβ may be a novel target for transcription factors of the HMG-box SRY/Sox family and imply a potential role for NF-κB/IκBβ in spermatogenesis

    The Genetics of Male Infertility

    No full text
    corecore