70 research outputs found

    Compositional modulation and ordering in semiconductors

    Get PDF
    Journal ArticleThe science of materials as a specific discipline is a relatively modern development. Within this rather modern field, the study of semiconductor materials is an even more recent development. Modern textbooks on materials science focus primarily on the properties of metals and second on the properties of ceramics, reflecting the commercial importance of these materials 50 years ago when the transistor was demonstrated using germanium

    Waveguiding in planar photonic crystals

    Get PDF
    Photonic crystal planar circuits designed and fabricated in silicon on silicon dioxide are demonstrated. Our structures are based on two-dimensional confinement by photonic crystals in the plane of propagation, and total internal reflection to achieve confinement in the third dimension. These circuits are shown to guide light at 1550 nm around sharp corners where the radius of curvature is similar to the wavelength of light

    Experimental and theoretical confirmation of Bloch-mode light propagation in planar photonic crystal waveguides

    Get PDF
    The dispersion diagram of the leaky modes in the planar photonic crystal waveguide is experimentally obtained for the wavelengths from 1440 to 1590 nm. A small stop band, around wavelength 1500 nm, is detected. The experimentally obtained results are in very good agreement with our three-dimensional finite difference time domain calculations. Propagation losses of the leaky modes are estimated and we have found that they decrease as we approach the ministop band

    Waveguiding at 1550 nm using photonic crystal structures in silicon on insulator wafers

    Get PDF
    Design, fabrication and light guiding in planar photonic crystal structures including sharp corners with a bending radius less than 1 micron are demonstrated at 1550 nm wavelength in silicon waveguides on silicon dioxide substrates. Photon confinement in the sample plane was achieved by a photonic crystal structure while confinement in the vertical direction was achieved by index of refraction contrast

    Experimental characterization of dispersion properties of leaky modes in planar photonic crystal waveguide

    Get PDF
    We have experimentally observed the coupling of a Bloch wave in a single-line-defect planar photonic crystal and have mapped the dispersion diagram of the leaky mode component of this wave. The results are in excellent agreement with our three-dimensional finite difference time domain calculations

    Experimental characterization of dispersion properties of the leaky modes in planar photonic crystal waveguide

    Get PDF
    We have experimentally obtained the dispersion diagram of the leaky modes in a planar photonic crystal waveguide for wavelengths from 1440 nm to 1590 nm. A small stop band around Ī»=1500 nm is also detected. The experimental results are in very good agreement with our 3D FDTD calculations

    Waveguiding at 1550 nm using photonic crystal structures in silicon on insulator wafers

    Get PDF
    Design, fabrication and light guiding in planar photonic crystal structures including sharp corners with a bending radius less than 1 micron are demonstrated at 1550 nm wavelength in silicon waveguides on silicon dioxide substrates. Photon confinement in the sample plane was achieved by a photonic crystal structure while confinement in the vertical direction was achieved by index of refraction contrast

    Experimental characterization of dispersion properties of leaky modes in planar photonic crystal waveguide

    Get PDF
    We have experimentally observed the coupling of a Bloch wave in a single-line-defect planar photonic crystal and have mapped the dispersion diagram of the leaky mode component of this wave. The results are in excellent agreement with our three-dimensional finite difference time domain calculations

    Nanophotonics based on planar photonic crystals

    Get PDF
    By creating different types of defects in the photonic crystal lattice, various nanophotonics components, such as cavities and waveguides, can be realized. The quest for a compact and efficient nano-cavity, with high quality factor (Q) and small mode volume (V/sub mode/), has been a central part of research in integrated optics. Recently, we have proposed a systematic method to design optical nano-cavities that satisfy both of these requirements. The cavity consists of a defect hole that is smaller than surrounding holes arranged in the triangular lattice photonic crystal. In order to test our design we have fabricated high-Q cavities in the InGaAsP material system
    • ā€¦
    corecore