7 research outputs found

    Sequencing effort dictates gene discovery in marine microbial metagenomes

    No full text
    © 2020 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd. Massive metagenomic sequencing combined with gene prediction methods were previously used to compile the gene catalogue of the ocean and host-associated microbes. Global expeditions conducted over the past 15 years have sampled the ocean to build a catalogue of genes from pelagic microbes. Here we undertook a large sequencing effort of a perturbed Red Sea plankton community to uncover that the rate of gene discovery increases continuously with sequencing effort, with no indication that the retrieved 2.83 million non-redundant (complete) genes predicted from the experiment represented a nearly complete inventory of the genes present in the sampled community (i.e., no evidence of saturation). The underlying reason is the Pareto-like distribution of the abundance of genes in the plankton community, resulting in a very long tail of millions of genes present at remarkably low abundances, which can only be retrieved through massive sequencing. Microbial metagenomic projects retrieve a variable number of unique genes per Tera base-pair (Tbp), with a median value of 14.7 million unique genes per Tbp sequenced across projects. The increase in the rate of gene discovery in microbial metagenomes with sequencing effort implies that there is ample room for new gene discovery in further ocean and holobiont sequencing studies

    Pan‐regional marine benthic cryptobiome biodiversity patterns revealed by metabarcoding Autonomous Reef Monitoring Structures

    No full text
    International audienceAutonomous Reef Monitoring Structures (ARMS) have been applied worldwide to characterize the critical yet frequently overlooked biodiversity patterns of marine benthic organisms. In order to disentangle the relevance of environmental factors in benthic patterns, here, through standardized metabarcoding protocols, we analyze sessile and mobile (<2 mm) organisms collected using ARMS deployed across six regions with different environmental conditions (3 sites x 3 replicates per region): Baltic, Western Mediterranean, Adriatic, Black and Red Seas, and the Bay of Biscay. A total of 27473 Amplicon Sequence Variants (ASVs) were observed ranging from 1404 in the Black Sea to 9958 in the Red Sea. No ASVs were shared amongst all regions. The highest number of shared ASVs was between the Western Mediterranean and the Adriatic Sea (116) and Bay of Biscay (115). Relatively high numbers of ASVs (103), mostly associated with the genus Amphibalanus, were also shared between the lower salinity seas (Baltic and Black Seas). We found that compositional differences in spatial patterns of rocky-shore benthos are determined slightly more by dispersal limitation than environmental filtering. Dispersal limitation was similar between sessile and mobile groups, while the sessile group had a larger environmental niche breadth than the mobile group. Further, our study can provide a foundation for future evaluations of biodiversity patterns in the cryptobiome, which can contribute up to 70% of the local biodiversity

    Environmental DNA metabarcoding for benthic monitoring: A review of sediment sampling and DNA extraction methods

    No full text
    International audienceEnvironmental DNA (eDNA) metabarcoding (parallel sequencing of DNA/RNA for identification of whole communities within a targeted group) is revolutionizing the field of aquatic biomonitoring. To date, most metabarcoding studies aiming to assess the ecological status of aquatic ecosystems have focused on water eDNA and macroinvertebrate bulk samples. However, the eDNA metabarcoding has also been applied to soft sediment samples, mainly for assessing microbial or meiofaunal biota. Compared to classical methodologies based on manual sorting and morphological identification of benthic taxa, eDNA metabarcoding offers potentially important advantages for assessing the environmental quality of sediments. The methods and protocols utilized for sediment eDNA metabarcoding can vary considerably among studies, and standardization efforts are needed to improve their robustness, comparability and use within regulatory frameworks. Here, we review the available information on eDNA metabarcoding applied to sediment samples, with a focus on sampling, preservation, and DNA extraction steps. We discuss challenges specific to sediment eDNA analysis, including the variety of different sources and states of eDNA and its persistence in the sediment. This paper aims to identify good-practice strategies and facilitate method harmonization for routine use of sediment eDNA in future benthic monitoring
    corecore