3 research outputs found

    Study of pulsatile pressure-driven electroosmotic flows through an elliptic cylindrical microchannel with the Navier slip condition

    Get PDF
    This paper aims to study an unsteady electric field-driven and pulsatile pressure-driven flow of a Newtonian fluid in an elliptic cylindrical microchannel with Navier boundary wall slip. The governing equations of the slip flow and distributions of electric potential and charge densities are the modified Navier-Stokes equations, the Poisson equation and the Nernst-Planck equations, respectively. Analytical and numerical analyses based on the Mathieu and modified Mathieu equations are performed to investigate the interplaying effects of pulsatile pressure gradients and the slip lengths on the electroosmotic flow

    Combined Pressure-Driven and Electroosmotic Slip Flow through Elliptic Cylindrical Microchannels: The Effect of the Eccentricity of the Channel Cross-Section

    Full text link
    Electroosmotic force has been used extensively to manipulate fluid flow in a microfluidic system with various channel shapes, especially an elliptic cylinder. However, developing a computational domain and simulating fluid flow for a system involving an elliptic channel consumes a large amount of time. Moreover, the mathematical expression for the fluid velocity of electroosmotic flow in an elliptic channel may be given in the form of the Mathieu functions that have difficulty in achieving the numerical result. In addition, there is clear scientific evidence that confirms the slippage of fluid at the solid-fluid interface in a microscale system. In this study, we present the mathematical model of combined pressure-driven and electroosmotic flow through elliptic microchannels under the slip-fluid condition. From the practical point of view in fluidics, the effect of the eccentricity of the channel cross-section is investigated on the volumetric flow rate to overcome the difficulty. The results show that the substitution of the equivalent circular channel for an elliptic channel provides a valid flow rate under the situation that the areas of both channel cross-sections are equal and the eccentricity of the elliptic cross-section is less than 0.5. Additionally, the flow rate obtained from the substitution is more accurate when the slip length increases or the pressure-gradient-to-external-electric-field ratio decreases

    The SLI-SC Mathematical Model of African Swine Fever Transmission among Swine Farms: The Effect of Contaminated Human Vector

    Full text link
    In this paper, a mathematical model for African swine fever is modified by considering the swine farm with the contaminated human vector that is able to infect and spread the disease among swine farms. In the developed model, we have divided the swine farm density into three related groups, namely the susceptible swine farm compartment, latent swine farm compartment, and infectious swine farm compartment. On the other hand, the human vector population density has been separated into two classes, namely the susceptible human vector compartment and the infectious human vector compartment. After that, we use this model and a quarantine strategy to analyze the spread of the infection. In addition, the basic reproduction number R0 is determined by using the next-generation matrix, which can analyze the stability of the model. Finally, the numerical simulations of the proposed model are illustrated to confirm the results from theorems. The results showed that the transmission coefficient values per unit of time per individual between the human vector and the swine farm resulted in the spread of African swine fever
    corecore