3 research outputs found

    Direct Acceleration of Ions With Variable-frequency Lasers

    Full text link
    A method is proposed for producing monoergetic, high-quality ion beams in vacuum, via direct acceleration by the electromagnetic field of two counterpropagating, variable-frequency lasers: ions are trapped and accelerated by a beat-wave structure with variable phase velocity, allowing for fine control over the energy and the charge of the beam via tuning of the frequency variation. The physical mechanism is described with a one-dimensional theory, providing the general conditions for trapping and scaling laws for the relevant features of the ion beam. Two-dimensional, electromagnetic particle-in-cell simulations, in which hydrogen gas is considered as an ion source, confirm the validity and the robustness of the method.Comment: 15 pages, 6 figures, to appear in IEEE Transactions on Plasma Science, special issue Laser & Plasma Accelerator

    All-optical trapping and acceleration of heavy particles

    Full text link
    A scheme for fast, compact, and controllable acceleration of heavy particles in vacuum is proposed, in which two counterpropagating lasers with variable frequencies drive a beat-wave structure with variable phase velocity, thus allowing for trapping and acceleration of heavy particles, such as ions or muons. Fine control over the energy distribution and the total charge of the beam is obtained via tuning of the frequency variation. The acceleration scheme is described with a one-dimensional theory, providing the general conditions for trapping and scaling laws for the relevant features of the particle beam. Two-dimensional, electromagnetic particle-in-cell simulations confirm the validity and the robustness of the physical mechanism.Comment: 10 pages, 3 figures, to appear in New Journal of Physic

    Prospects for all-optical ultrafast muon acceleration

    Full text link
    A scheme for fast, compact, and controllable acceleration of heavy particles in vacuum has been recently proposed [F. Peano et al., New J. Phys. 10 033028 (2008)], wherein two counterpropagating laser beams with variable frequencies drive a beat-wave structure with variable phase velocity, leading to particle trapping and acceleration. The technique allows for fine control over the energy distribution and the total charge of the accelerated beam, to be obtained via tuning of the frequency variation. Here, the theoretical bases of the acceleration scheme are described, and the possibility of applications to ultrafast muon acceleration and to the prompt extraction of cold-muon beams is discussed.Comment: 12 pages, 5 figures, to appear in Plasma Physics and Controlled Fusio
    corecore