361 research outputs found
Ambiguous figures and the content of experience
Representationalism is the position that the phenomenal character of an experience is either identical with, or supervenes on, the content of that experience. Many representationalists hold that the relevant content of experience is nonconceptual. I propose a counterexample to this form of representationalism that arises from the phenomenon of Gestalt switching, which occurs when viewing ambiguous figures. First, I argue that one does not need to appeal to the conceptual content of experience or to judgements to account for Gestalt switching. I then argue that experiences of certain ambiguous figures are problematic because they have different phenomenal characters but that no difference in the nonconceptual content of these experiences can be identified. I consider three solutions to this problem that have been proposed by both philosophers and psychologists and conclude that none can account for all the ambiguous figures that pose the problem. I conclude that the onus is on representationalists to specify the relevant difference in content or to abandon their position
Quantifying the connectivity of a network: The network correlation function method
Networks are useful for describing systems of interacting objects, where the
nodes represent the objects and the edges represent the interactions between
them. The applications include chemical and metabolic systems, food webs as
well as social networks. Lately, it was found that many of these networks
display some common topological features, such as high clustering, small
average path length (small world networks) and a power-law degree distribution
(scale free networks). The topological features of a network are commonly
related to the network's functionality. However, the topology alone does not
account for the nature of the interactions in the network and their strength.
Here we introduce a method for evaluating the correlations between pairs of
nodes in the network. These correlations depend both on the topology and on the
functionality of the network. A network with high connectivity displays strong
correlations between its interacting nodes and thus features small-world
functionality. We quantify the correlations between all pairs of nodes in the
network, and express them as matrix elements in the correlation matrix. From
this information one can plot the correlation function for the network and to
extract the correlation length. The connectivity of a network is then defined
as the ratio between this correlation length and the average path length of the
network. Using this method we distinguish between a topological small world and
a functional small world, where the latter is characterized by long range
correlations and high connectivity. Clearly, networks which share the same
topology, may have different connectivities, based on the nature and strength
of their interactions. The method is demonstrated on metabolic networks, but
can be readily generalized to other types of networks.Comment: 10 figure
The silence of self-knowledge
Gareth Evans famously affirmed an explanatory connection between answering the question whether p and knowing whether one believes that p. This is commonly interpreted in terms of the idea that judging that p constitutes an adequate basis for the belief that one believes that p. This paper formulates and defends an alternative, more modest interpretation, which develops from the suggestion that one can know that one believes that p in judging that p
Novel colours and the content of experience
I propose a counterexample to naturalistic representational theories of phenomenal character. The counterexample is generated by experiences of novel colours reported by Crane and Piantanida. I consider various replies that a representationalist might make, including whether novel colours could be possible colours of objects and whether one can account for novel colours as one would account for binary colours or colour mixtures. I argue that none of these strategies is successful and therefore that one cannot fully explain the nature of the phenomenal character of perceptual experiences using a naturalistic conception of representation
Planck pre-launch status: HFI beam expectations from the optical optimisation of the focal plane
Planck is a European Space Agency (ESA) satellite, launched in May 2009, which will map the cosmic microwave background anisotropies in intensity and polarisation with unprecedented detail and sensitivity. It will also provide full-sky maps of astrophysical foregrounds. An accurate knowledge of the telescope beam patterns is an essential element for a correct analysis of the acquired astrophysical data. We present a detailed description of the optical design of the High Frequency Instrument (HFI) together with some of the optical performances measured during the calibration campaigns. We report on the evolution of the knowledge of the pre-launch HFI beam patterns when coupled to ideal telescope elements, and on their significance for the HFI data analysis procedure
Thinking through illusion
Perception of a property (e.g. a colour, a shape, a size) can enable thought about the property, while at the same time misleading the subject as to what the property is like. This long-overlooked claim parallels a more familiar observation concerning perception-based thought about objects, namely that perception can enable a subject to think about an object while at
the same time misleading her as to what the object is like. I defend the overlooked claim, and then use it to generate a challenge for a standard way of thinking about the relationship between visual experience and rational belief formation. Put informally, that view holds that just as we can mislead others by saying something false, illusory experience misleads by
misrepresenting how things stand in the world. I argue that we ought to abandon this view in favour of some radical alternative account of the relationship between visual experience and rational belief formation
COrE (Cosmic Origins Explorer) A White Paper
COrE (Cosmic Origins Explorer) is a fourth-generation full-sky,
microwave-band satellite recently proposed to ESA within Cosmic Vision
2015-2025. COrE will provide maps of the microwave sky in polarization and
temperature in 15 frequency bands, ranging from 45 GHz to 795 GHz, with an
angular resolution ranging from 23 arcmin (45 GHz) and 1.3 arcmin (795 GHz) and
sensitivities roughly 10 to 30 times better than PLANCK (depending on the
frequency channel). The COrE mission will lead to breakthrough science in a
wide range of areas, ranging from primordial cosmology to galactic and
extragalactic science. COrE is designed to detect the primordial gravitational
waves generated during the epoch of cosmic inflation at more than
for . It will also measure the CMB gravitational lensing
deflection power spectrum to the cosmic variance limit on all linear scales,
allowing us to probe absolute neutrino masses better than laboratory
experiments and down to plausible values suggested by the neutrino oscillation
data. COrE will also search for primordial non-Gaussianity with significant
improvements over Planck in its ability to constrain the shape (and amplitude)
of non-Gaussianity. In the areas of galactic and extragalactic science, in its
highest frequency channels COrE will provide maps of the galactic polarized
dust emission allowing us to map the galactic magnetic field in areas of
diffuse emission not otherwise accessible to probe the initial conditions for
star formation. COrE will also map the galactic synchrotron emission thirty
times better than PLANCK. This White Paper reviews the COrE science program,
our simulations on foreground subtraction, and the proposed instrumental
configuration.Comment: 90 pages Latex 15 figures (revised 28 April 2011, references added,
minor errors corrected
- âŠ