104 research outputs found
Constraining the expansion rate of the Universe using low-redshift ellipticals as cosmic chronometers
We present a new methodology to determine the expansion history of the
Universe analyzing the spectral properties of early type galaxies (ETG). We
found that for these galaxies the 4000\AA break is a spectral feature that
correlates with the relative ages of ETGs. In this paper we describe the
method, explore its robustness using theoretical synthetic stellar population
models, and apply it using a SDSS sample of 14 000 ETGs. Our motivation
to look for a new technique has been to minimise the dependence of the cosmic
chronometer method on systematic errors. In particular, as a test of our
method, we derive the value of the Hubble constant (stat)
(syst) (68% confidence), which is not only fully compatible with the
value derived from the Hubble key project, but also with a comparable error
budget. Using the SDSS, we also derive, assuming w=constant, a value for the
dark energy equation of state parameter (stat)
(syst). Given the fact that the SDSS ETG sample only reaches , this
result shows the potential of the method. In future papers we will present
results using the high-redshift universe, to yield a determination of H(z) up
to .Comment: 25 pages, 17 figures, JCAP accepte
Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements
We present new determinations of the cosmic expansion history from
red-envelope galaxies. We have obtained for this purpose high-quality spectra
with the Keck-LRIS spectrograph of red-envelope galaxies in 24 galaxy clusters
in the redshift range 0.2 < z < 1.0. We complement these Keck spectra with
high-quality, publicly available archival spectra from the SPICES and VVDS
surveys. We improve over our previous expansion history measurements in Simon
et al. (2005) by providing two new determinations of the expansion history:
H(z) = 97 +- 62 km/sec/Mpc at z = 0.5 and H(z) = 90 +- 40 km/sec/Mpc at z =
0.8. We discuss the uncertainty in the expansion history determination that
arises from uncertainties in the synthetic stellar-population models. We then
use these new measurements in concert with cosmic-microwave-background (CMB)
measurements to constrain cosmological parameters, with a special emphasis on
dark-energy parameters and constraints to the curvature. In particular, we
demonstrate the usefulness of direct H(z) measurements by constraining the
dark- energy equation of state parameterized by w0 and wa and allowing for
arbitrary curvature. Further, we also constrain, using only CMB and H(z) data,
the number of relativistic degrees of freedom to be 4 +- 0.5 and their total
mass to be < 0.2 eV, both at 1-sigma.Comment: Submitted to JCA
Dark energy as a mirage
Motivated by the observed cosmic matter distribution, we present the
following conjecture: due to the formation of voids and opaque structures, the
average matter density on the path of the light from the well-observed objects
changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in
the clumpy late universe, so that the average expansion rate increases along
our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free
expansion Ht ~ 1 at low redshifts. To calculate the modified observable
distance-redshift relations, we introduce a generalized Dyer-Roeder method that
allows for two crucial physical properties of the universe: inhomogeneities in
the expansion rate and the growth of the nonlinear structures. By treating the
transition redshift to the void-dominated era as a free parameter, we find a
phenomenological fit to the observations from the CMB anisotropy, the position
of the baryon oscillation peak, the magnitude-redshift relations of type Ia
supernovae, the local Hubble flow and the nucleosynthesis, resulting in a
concordant model of the universe with 90% dark matter, 10% baryons, no dark
energy, 15 Gyr as the age of the universe and a natural value for the
transition redshift z_0=0.35. Unlike a large local void, the model respects the
cosmological principle, further offering an explanation for the late onset of
the perceived acceleration as a consequence of the forming nonlinear
structures. Additional tests, such as quantitative predictions for angular
deviations due to an anisotropic void distribution and a theoretical derivation
of the model, can vindicate or falsify the interpretation that light
propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3:
matches the version published in General Relativity and Gravitatio
The First Magnetic Fields
We review current ideas on the origin of galactic and extragalactic magnetic
fields. We begin by summarizing observations of magnetic fields at cosmological
redshifts and on cosmological scales. These observations translate into
constraints on the strength and scale magnetic fields must have during the
early stages of galaxy formation in order to seed the galactic dynamo. We
examine mechanisms for the generation of magnetic fields that operate prior
during inflation and during subsequent phase transitions such as electroweak
symmetry breaking and the quark-hadron phase transition. The implications of
strong primordial magnetic fields for the reionization epoch as well as the
first generation of stars is discussed in detail. The exotic, early-Universe
mechanisms are contrasted with astrophysical processes that generate fields
after recombination. For example, a Biermann-type battery can operate in a
proto-galaxy during the early stages of structure formation. Moreover, magnetic
fields in either an early generation of stars or active galactic nuclei can be
dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also
downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd
The last stand before MAP: cosmological parameters from lensing, CMB and galaxy clustering
Cosmic shear measurements have now improved to the point where they deserve
to be treated on par with CMB and galaxy clustering data for cosmological
parameter analysis, using the full measured aperture mass variance curve rather
than a mere phenomenological parametrization thereof. We perform a detailed
9-parameter analysis of recent lensing (RCS), CMB (up to Archeops) and galaxy
clustering (2dF) data, both separately and jointly. CMB and 2dF data are
consistent with a simple flat adiabatic scale-invariant model with
Omega_Lambda=0.72+/-0.09, omega_cdm=0.115+/- 0.013, omega_b=0.024+/-0.003, and
a hint of reionization around z~8. Lensing helps further tighten these
constraints, but reveals tension regarding the power spectrum normalization:
including the RCS survey results raises sigma8 significantly and forces other
parameters to uncomfortable values. Indeed, sigma8 is emerging as the currently
most controversial cosmological parameter, and we discuss possible resolutions
of this sigma8 problem. We also comment on the disturbing fact that many recent
analyses (including this one) obtain error bars smaller than the Fisher matrix
bound. We produce a CMB power spectrum combining all existing experiments, and
using it for a "MAP versus world" comparison next month will provide a powerful
test of how realistic the error estimates have been in the cosmology community.Comment: Added references and Fisher error discussion. Combined CMB data,
window and covariance matrix for January "MAP vs World" contest at
http://www.hep.upenn.edu/~max/cmblsslens.html or from [email protected]
Effects on short term outcome of non-invasive ventilation use in the emergency department to treat patients with acute heart failure: A propensity score-based analysis of the EAHFE Registry
Objective: To assess the effects of non-invasive ventilation (NIV) in emergency department (ED) patients with acute heart failure (AHF) on short term outcomes.
Methods: Patients from the EAHFE Registry (a multicenter, observational, multipurpose, cohort-designed database including consecutive AHF patients in 41 Spanish EDs) were grouped based on NIV treatment (NIV+ and NIV–groups). Using propensity score (PS) methodology, we identified two subgroups of patients matched by 38 covariates and compared regarding 30-day survival (primary outcome). Interaction was investigated for age, sex, ischemic cardiomyopathy, chronic obstructive pulmonary disease, AHF precipitated by an acute coronary syndrome (ACS), AHF classified as hypertensive or acute pulmonary edema (APE), and systolic blood pressure (SBP). Secondary outcomes were intensive care unit (ICU) admission; mechanical ventilation; in-hospital, 3-day and 7-day mortality; and prolonged hospitalization (>7 days).
Results: Of 11, 152 patients from the EAHFE (age (SD): 80 (10) years; 55.5% women), 718 (6.4%) were NIV+ and had a higher 30-day mortality (HR = 2.229; 95%CI = 1.861–2.670) (p 85 years, p < 0.001), AHF associated with ACS (p = 0.045), and SBP < 100 mmHg (p < 0.001). No significant differences were found in the secondary endpoints except for more prolonged hospitalizations in NIV+ patients (OR = 1.445; 95%CI = 1.122–1.862) (p = 0.004).
Conclusion: The use of NIV to treat AHF in ED is not associated with improved mortality outcomes and should be cautious in old patients and those with ACS and hypotension
Influence of the length of hospitalisation in post-discharge outcomes in patients with acute heart failure: Results of the LOHRCA study
Objective: To investigate the relationship between length of hospitalisation (LOH) and post-discharge outcomes in acute heart failure (AHF) patients and to ascertain whether there are different patterns according to department of initial hospitalisation.
Methods: Consecutive AHF patients hospitalised in 41 Spanish centres were grouped based on the LOH (15 days). Outcomes were defined as 90-day post-discharge all-cause mortality, AHF readmissions, and the combination of both. Hazard ratios (HRs), adjusted by chronic conditions and severity of decompensation, were calculated for groups with LOH >6 days vs. LOH <6 days (reference), and stratified by hospitalisation in cardiology, internal medicine, geriatrics, or short-stay units.
Results: We included 8563 patients (mean age: 80 (SD = 10) years, 55.5% women), with a median LOH of 7 days (IQR 4–11): 2934 (34.3%) had a LOH 15 days. The 90-day post-discharge mortality was 11.4%, readmission 32.2%, and combined endpoint 37.4%. Mortality was increased by 36.5% (95%CI = 13.0–64.9) when LOH was 11–15 days, and by 72.0% (95%CI = 42.6–107.5) when >15 days. Conversely, no differences were found in readmission risk, and the combined endpoint only increased 21.6% (95%CI = 8.4–36.4) for LOH >15 days. Stratified analysis by hospitalisation departments rendered similar post-discharge outcomes, with all exhibiting increased mortality for LOH >15 days and no significant increments in readmission risk.
Conclusions: Short hospitalisations are not associated with worse outcomes. While post-discharge readmissions are not affected by LOH, mortality risk increases as the LOH lengthens. These findings were similar across hospitalisation departments
Genetic Sharing with Cardiovascular Disease Risk Factors and Diabetes Reveals Novel Bone Mineral Density Loci.
Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity
Geographical and temporal distribution of SARS-CoV-2 clades in the WHO European Region, January to June 2020
We show the distribution of SARS-CoV-2 genetic clades over time and between countries and outline potential genomic surveillance objectives. We applied three available genomic nomenclature systems for SARS-CoV-2 to all sequence data from the WHO European Region available during the COVID-19 pandemic until 10 July 2020. We highlight the importance of real-time sequencing and data dissemination in a pandemic situation. We provide a comparison of the nomenclatures and lay a foundation for future European genomic surveillance of SARS-CoV-2.Peer reviewe
- …