31 research outputs found

    Regulation of Anthrax Toxin-Specific Antibody Titers by Natural Killer T Cell-Derived IL-4 and IFNγ

    Get PDF
    Activation of Natural Killer-like T cells (NKT) with the CD1d ligand α-GC leads to enhanced production of anthrax toxin protective Ag (PA)-neutralizing Abs, yet the underlying mechanism for this adjuvant effect is not known. In the current study we examined the role of Th1 and Th2 type responses in NKT-mediated enhancement of antibody responses to PA. First, the contribution of IL-4 and IFNγ to the production of PA-specific toxin-neutralizing Abs was examined. By immunizing C57Bl/6 controls IL-4−/− mice and IFNγ−/− mice and performing passive serum transfer experiments, it was observed that sera containing PA-specific IgG1, IgG2b and IgG2c neutralized toxin in vitro and conferred protection in vivo. Sera containing IgG2b and IgG2c neutralized toxin in vitro but were not sufficient for protection in vivo. Sera containing IgG1 and IgG2b neutralized toxin in vitro and conferred protection in vivo. IgG1 therefore emerged as a good correlate of protection. Next, C57Bl/6 mice were immunized with PA alone or PA plus a Th2-skewing α-GC derivative known as OCH. Neutralizing PA-specific IgG1 responses were modestly enhanced by OCH in C57Bl/6 mice. Conversely, IgG2b and IgG2c were considerably enhanced in PA/OCH-immunized IL-4−/− mice but did not confer protection. Finally, bone marrow chimeras were generated such that NKT cells were unable to express IL-4 or IFNγ. NKT-derived IL-4 was required for OCH-enhanced primary IgG1 responses but not recall responses. NKT-derived IL-4 and IFNγ also influenced primary and recall IgG2b and IgG2c titers. These data suggest targeted skewing of the Th2 response by α-GC derivatives can be exploited to optimize anthrax vaccination

    Mitochondrial Membrane Potential in Human Neutrophils Is Maintained by Complex III Activity in the Absence of Supercomplex Organisation

    Get PDF
    textabstractBackground: Neutrophils depend mainly on glycolysis for their enegry provision. Their mitochondria maintain a membrace potential (ΔΨm), which is usually generated by the repiratory chain complexes. We investigated the source of ΔΨm in neutrophils, as compared to peripheral blood mononuclear leukocytes and HL-60 cells, and whether neutrophils can still utilise this ΔΨm for the generation of ATP. Methods and Principal Findings: Individual activity of the oxidative phosphorylation complexes was significantly reduced in neutrophils, except for complex II and V, but ΔΨm was still decreased byinhibition of complex III, confirming the role of the respiratory chain in maintaining ΔΨm. Complex V did not maintain ΔΨm by consumption of ATP, as has previously been suggested for eosinophils shuttle. Furthermore, respiratory supercomplexes, which contribute to efficient coupling of the respiratory chain to ATP synthesis, were ladding in neutrophil mitochondria. When HL-60 cells were differentiated to neutrophil-like cells, they lost mitochondrial supercimplex organisation while gaining increased aerobic glycolysis, just like neutrophils. Conclusions: We show that neutrophils can maintain ΔΨm via the glycerol-3-phosphate shuttle, wereby their mitochondria play an important role in the regulation of aerobic glycolysis, rather than producing energy themselves. This peculiar mitochondrial phenotype is acquired during differentiation from myeloid precursors

    A Lipid Based Antigen Delivery System Efficiently Facilitates MHC Class-I Antigen Presentation in Dendritic Cells to Stimulate CD8+ T Cells

    Get PDF
    The most effective strategy for protection against intracellular infections such as Leishmania is vaccination with live parasites. Use of recombinant proteins avoids the risks associated with live vaccines. However, due to low immunogenicity, they fail to trigger T cell responses particularly of CD8+cells requisite for persistent immunity. Previously we showed the importance of protein entrapment in cationic liposomes and MPL as adjuvant for elicitation of CD4+ and CD8+ T cell responses for longterm protection. In this study we investigated the role of cationic liposomes on maturation and antigen presentation capacity of dendritic cells (DCs). We observed that cationic liposomes were taken up very efficiently by DCs and transported to different cellular sites. DCs activated with liposomal rgp63 led to efficient presentation of antigen to specific CD4+ and CD8+ T cells. Furthermore, lymphoid CD8+ T cells from liposomal rgp63 immunized mice demonstrated better proliferative ability when co-cultured ex vivo with stimulated DCs. Addition of MPL to vaccine enhanced the antigen presentation by DCs and induced more efficient antigen specific CD8+ T cell responses when compared to free and liposomal ntigen. These liposomal formulations presented to CD8+ T cells through TAP-dependent MHC-I pathway offer new possibilities for a safe subunit vaccine

    Safety and Immunogenicity of an HIV Adenoviral Vector Boost after DNA Plasmid Vaccine Prime by Route of Administration: A Randomized Clinical Trial

    Get PDF
    In the development of HIV vaccines, improving immunogenicity while maintaining safety is critical. Route of administration can be an important factor.This multicenter, open-label, randomized trial, HVTN 069, compared routes of administration on safety and immunogenicity of a DNA vaccine prime given intramuscularly at 0, 1 and 2 months and a recombinant replication-defective adenovirus type 5 (rAd5) vaccine boost given at 6 months by intramuscular (IM), intradermal (ID), or subcutaneous (SC) route. Randomization was computer-generated by a central data management center; participants and staff were not blinded to group assignment. The outcomes were vaccine reactogenicity and humoral and cellular immunogenicity. Ninety healthy, HIV-1 uninfected adults in the US and Peru, aged 18-50 were enrolled and randomized. Due to the results of the Step Study, injections with rAd5 vaccine were halted; thus 61 received the booster dose of rAd5 vaccine (IM: 20; ID:21; SC:20). After the rAd5 boost, significant differences by study arm were found in severity of headache, pain and erythema/induration. Immune responses (binding and neutralizing antibodies, IFN-γ ELISpot HIV-specific responses and CD4+ and CD8+ T-cell responses by ICS) at four weeks after the rAd5 booster were not significantly different by administration route of the rAd5 vaccine boost (Binding antibody responses: IM: 66.7%; ID: 70.0%; SC: 77.8%; neutralizing antibody responses: IM: 11.1%; ID: 0.0%; SC 16.7%; ELISpot responses: IM: 46.7%; ID: 35.3%; SC: 44.4%; CD4+ T-cell responses: IM: 29.4%; ID: 20.0%; SC: 35.3%; CD8+ T-cell responses: IM: 29.4%; ID: 16.7%; SC: 50.0%.)This study was limited by the reduced sample size. The higher frequency of local reactions after ID and SC administration and the lack of sufficient evidence to show that there were any differences in immunogenicity by route of administration do not support changing route of administration for the rAd5 boost.ClinicalTrials.gov NCT00384787

    An epigenome-wide association study of total serum immunoglobulin E concentration

    Get PDF
    Immunoglobulin E (IgE) is a central mediator of allergic (atopic) inflammation. Therapies directed against IgE can alleviate hay fever and allergic asthma. Genetic association studies have not yet identified novel therapeutic targets or pathways underlying IgE regulation. We therefore surveyed epigenetic associations between serum IgE concentrations and methylation at loci concentrated in CpG islands genome wide in 95 nuclear pedigrees, using DNA from peripheral blood leukocytes. We validated positive results in additional families and in subjects from the general population. Here we show replicated associations-with a meta-analysis false discovery rate less than 10(-4)-between IgE and low methylation at 36 loci. Genes annotated to these loci encode known eosinophil products, and also implicate phospholipid inflammatory mediators, specific transcription factors and mitochondrial proteins. We confirmed that methylation at these loci differed significantly in isolated eosinophils from subjects with and without asthma and high IgE levels. The top three loci accounted for 13% of IgE variation in the primary subject panel, explaining the tenfold higher variance found compared with that derived from large single-nucleotide polymorphism genome-wide association studies. This study identifies novel therapeutic targets and biomarkers for patient stratification for allergic diseases
    corecore