3 research outputs found
Collaborative Multi-Robot Search and Rescue: Planning, Coordination, Perception, and Active Vision
Search and rescue (SAR) operations can take significant advantage from supporting autonomous or teleoperated robots and multi-robot systems. These can aid in mapping and situational assessment, monitoring and surveillance, establishing communication networks, or searching for victims. This paper provides a review of multi-robot systems supporting SAR operations, with system-level considerations and focusing on the algorithmic perspectives for multi-robot coordination and perception. This is, to the best of our knowledge, the first survey paper to cover (i) heterogeneous SAR robots in different environments, (ii) active perception in multi-robot systems, while (iii) giving two complementary points of view from the multi-agent perception and control perspectives. We also discuss the most significant open research questions: shared autonomy, sim-to-real transferability of existing methods, awareness of victims' conditions, coordination and interoperability in heterogeneous multi-robot systems, and active perception. The different topics in the survey are put in the context of the different challenges and constraints that various types of robots (ground, aerial, surface, or underwater) encounter in different SAR environments (maritime, urban, wilderness, or other post-disaster scenarios). The objective of this survey is to serve as an entry point to the various aspects of multi-robot SAR systems to researchers in both the machine learning and control fields by giving a global overview of the main approaches being taken in the SAR robotics area
Analysis of airport design for introducing infrastructure for autonomous drones
Abstract
Purpose: Connecting autonomous drones to ground operations and services is a prerequisite for the adoption of scalable and sustainable drone services in the built environment. Despite the rapid advance in the field of autonomous drones, the development of ground infrastructure has received less attention. Contemporary airport design offers potential solutions for the infrastructure serving autonomous drone services. To that end, this paper aims to construct a framework for connecting air and ground operations for autonomous drone services. Furthermore, the paper defines the minimum facilities needed to support unmanned aerial vehicles for autonomous logistics and the collection of aerial data.
Design/methodology/approach: The paper reviews the state-of-the-art in airport design literature as the basis for analysing the guidelines of manned aviation applicable to the development of ground infrastructure for autonomous drone services. Socio-technical system analysis was used for identifying the service needs of drones.
Findings: The key findings are functional modularity based on the principles of airport design applies to micro-airports and modular service functions can be connected efficiently with an autonomous ground handling system in a sustainable manner addressing the concerns on maintenance, reliability and lifecycle.
Research limitations/implications: As the study was limited to the airport design literature findings, the evolution of solutions may provide features supporting deviating approaches. The role of autonomy and cloud-based service processes are quintessentially different from the conventional airport design and are likely to impact real-life solutions as the area of future research.
Practical implications: The findings of this study provided a framework for establishing the connection between the airside and the landside for the operations of autonomous aerial services. The lack of such framework and ground infrastructure has hindered the large-scale adoption and easy-to-use solutions for sustainable logistics and aerial data collection for decision-making in the built environment.
Social implications: The evolution of future autonomous aerial services should be accessible to all users, “democratising” the use of drones. The data collected by drones should comply with the privacy-preserving use of the data. The proposed ground infrastructure can contribute to offloading, storing and handling aerial data to support drone services’ acceptability.
Originality/value: To the best of the authors’ knowledge, the paper describes the first design framework for creating a design concept for a modular and autonomous micro-airport system for unmanned aviation based on the applied functions of full-size conventional airports