4 research outputs found

    The effect of glycan shift on antibodies against HCV E2 412-425 epitope elicited by chimeric sHBsAg-based virus-like particles

    Get PDF
    Two of the most important mechanisms of hepatitis C virus (HCV) immune evasion are the high variability of the amino acid sequence and epitope shielding via heavy glycosylation of the envelope (E) proteins. Previously, we showed that chimeric sHBsAg (hepatitis B virus [HBV] small surface antigen)-based virus-like particles (VLPs) carrying highly conserved epitope I from the HCV E2 glycoprotein (sHBsAg_412–425) elicit broadly neutralizing antibodies (bnAbs). However, many reports have identified escape mutations for such bnAbs that shift the N-glycosylation site from N417 to N415. This shift effectively masks the recognition of epitope I by antibodies raised against the wild-type glycoprotein. To investigate if glycan-shift-mediated immune evasion could be overcome by targeted vaccination strategies, we designed sHBsAg-based VLPs carrying epitope I with an N417S change (sHBsAg_N417S). Studies in BALB/c mice revealed that both sHBsAg_412–425 and sHBsAg_N417S VLPs were immunogenic, eliciting antibodies that recognized peptides encompassing epitope I regardless of the N417S change. However, we observed substantial differences in E1E2 glycoprotein binding and cell culture-derived HCV (HCVcc) neutralization between the sera elicited by sHBsAg_412–425 and those elicited by sHBsAg_N417S VLPs. Our results suggest a complex interplay among antibodies targeting epitope I, the E1E2 glycosylation status, and the epitope or global E1E2 conformation. Additionally, we observed striking similarities in the E1E2 glycoprotein binding patterns and HCVcc neutralization between sHBsAg_412–425 sera and AP33, suggesting that the immunization of mice with sHBsAg_412–425 VLPs can elicit AP33-like antibodies. This study emphasizes the role of antibodies against epitope I and represents an initial effort toward designing an antigen that elicits an immune response against epitope I with a glycan shift change

    Time and temperature dependent analytical stability of dry-collected Evalyn HPV self-sampling brush for cervical cancer screening

    No full text
    As a new initiative, HPV self-sampling to non-attenders using the dry Evalyn self-sampling brush is offered in the Capital Region of Denmark. The use of a dry brush is largely uncharted territory in terms of analytical stability. In this study we aim to provide evidence on the analytical quality of dry HPV self-sampling brushes as a function of time and temperature.We assessed the analytical stability of dry stored Evalyn brushes at three different temperatures, (4 °C, room temperature, 30 °C) and five different storage time points; T = 0 (baseline), 2, 4, 8, 16, and 32 weeks prior to HPV analysis using the BD Onclarity HPV assay.Mean Ct value of the Onclarity internal control was used as comparator of cellularity across time and temperatures, with no or only borderline statistical differences observed. HPV detection was stable throughout the five time points. In addition, analytically amplifiable DNA copy numbers and DNA fragmentation was assessed using the Agena iPLEX Exome QC assay, with no or only borderline statistical differences observed.In conclusion, the Evalyn brush is analytically stable with respect to human genomic material and HPV detection for up to 32 weeks at temperatures ranging from 4 °C to 30 °C. Keywords: Self-sampling, Dry self-sampling brushes, Analytical stability, HPV, Cervical cancer screenin
    corecore