9 research outputs found

    Covalently Linked Porphyrins as One-Dimensional Conductors

    Get PDF
    We apply first-principles calculations to address the problem of the formation and characterization of covalently linked porphyrin-like structures. We show that upon pressure a rehybridization process takes place which leads to one-dimensional compounds resembling nanothreads, in which carbon atoms are all 4-fold coordinated. We also show that the resulting nanostructures have metallic character and possess remarkable mechanical properties. Moreover, in the case of porphyrin–metal complexes, we find that the covalently linked structures may be a platform for the stabilization of straight metallic wires

    Electromechanical Modulations in Transition Metal Dichalcogenide Nanosheets: Implications for Environmental Sensors

    Get PDF
    Transition metal dichalcogenides (TMDs) are key players in the two-dimensional materials nanoarena due to their exquisite optoelectronic properties under a standard environment (room temperature and atmospheric pressure). Nevertheless, as reported in the literature, they may also portray interesting physical properties under different environments. Here, we show two distinct and significant electromechanical modulations in TMD nanosheets which are tuned by the environmental conditions (applied pressure and adsorbents). Using scanning probe microscopy techniques, we modify the environmental conditions and observe steplike rises in the electrical response of all studied TMDs (MoS2, WS2, MoSe2, and WSe2—monolayers and few layers). Ab initio calculations enable full understanding of specific mechanisms behind these electromechanical modulations, which may find important applications in the design of TMD-based environmental sensors

    Nanostructured system based on hydroxyapatite and curcumin: A promising candidate for osteosarcoma therapy:A promising candidate for osteosarcoma therapy

    Get PDF
    Osteosarcoma is the most common type of bone cancer. Despite therapeutic progress, survival rates for metastatic cases or that do not respond well to chemotherapy remain in the 30% range. In this sense, the use of nanotechnology to develop targeted and more effective therapies is a promising tool in the fight against cancer. Nanostructured hydroxyapatite, due to its biocompatibility and the wide possibility of functionalization, is an interesting material to design nanoplatforms for targeted drug delivery. These platforms have the potential to enable the use of natural substances in the fight against cancer, such as curcumin. Curcumin is a polyphenol with promising properties in treating various types of cancer, including osteosarcoma. In this work, hydroxyapatite (n-HA) nanorods synthesized by the hydrothermal method were investigated as a carrier for curcumin. For this, first-principle calculations based on the Density Functional Theory (DFT) were performed, in which the modification of curcumin (CM) with the coupling agent (3-aminopropyl) triethoxysilane (APTES) was theoretically evaluated. Curcumin was incorporated in n-HA and the drug loading stability was evaluated by leaching test. Samples were characterized by a multi-techniques approach, including Fourier transform infrared spectroscopy (FTIR), UV–visible spectroscopy (UV–Vis), X-ray diffraction (XRD), X-ray fluorescence spectrometry (FRX), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), zeta potential analysis (ζ), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). The results show that n-HAs with a 90 nm average size were obtained and successful incorporation of curcumin in the nanostructure was achieved. Cell viability and the number of osteosarcoma cells were decreased by CMAP-HA treatment. Furthermore, the stability test suggests that hydroxyapatite nanoparticles present great potential for the transportation of curcumin in the bloodstream, crediting this system for biological performance evaluations aiming at the treatment of osteosarcomas. Keywords: nanostructures, curcumin, hydroxyapatite, osteosarcoma

    Cyclopentene ring effects in cyanine dyes:A handle to fine-tune photophysical properties

    Get PDF
    The aim of this study is to investigate the photophysical properties of a cyanine dye analogue by performing first-principles calculations based on density functional theory (DFT) and time dependent-DFT. Cationic cyanine dyes are the subject of great importance due to their versatile applications and the tunability of their photophysical properties, such as by modifying their end groups and chain length. An example of this is the vinylene shift, which is experimentally known for these molecules, and it consists of a bathochromic (red) shift of approximately 100 nm of the 0–0 vibronic transition when a vinyl group is added to the polymethine chain. Our study shows that when the saturated moiety C2H4 of the cyclopentene ring is added to the chain, it interacts with the conjugated π-system, resulting in a smaller HOMO–LUMO gap. Here, we demonstrate the origin of this interaction and how it can be used to fine tune the absorption energies of this class of dyes

    Cyclopentene ring effects in cyanine dyes:A handle to fine-tune photophysical properties

    Get PDF
    The aim of this study is to investigate the photophysical properties of a cyanine dye analogue by performing first-principles calculations based on density functional theory (DFT) and time dependent-DFT. Cationic cyanine dyes are the subject of great importance due to their versatile applications and the tunability of their photophysical properties, such as by modifying their end groups and chain length. An example of this is the vinylene shift, which is experimentally known for these molecules, and it consists of a bathochromic (red) shift of approximately 100 nm of the 0–0 vibronic transition when a vinyl group is added to the polymethine chain. Our study shows that when the saturated moiety C2H4 of the cyclopentene ring is added to the chain, it interacts with the conjugated π-system, resulting in a smaller HOMO–LUMO gap. Here, we demonstrate the origin of this interaction and how it can be used to fine tune the absorption energies of this class of dyes

    Cyclopentene ring effects in cyanine dyes:A handle to fine-tune photophysical properties

    Get PDF
    The aim of this study is to investigate the photophysical properties of a cyanine dye analogue by performing first-principles calculations based on density functional theory (DFT) and time dependent-DFT. Cationic cyanine dyes are the subject of great importance due to their versatile applications and the tunability of their photophysical properties, such as by modifying their end groups and chain length. An example of this is the vinylene shift, which is experimentally known for these molecules, and it consists of a bathochromic (red) shift of approximately 100 nm of the 0–0 vibronic transition when a vinyl group is added to the polymethine chain. Our study shows that when the saturated moiety C2H4 of the cyclopentene ring is added to the chain, it interacts with the conjugated π-system, resulting in a smaller HOMO–LUMO gap. Here, we demonstrate the origin of this interaction and how it can be used to fine tune the absorption energies of this class of dyes

    Cyclopentene ring effects in cyanine dyes:A handle to fine-tune photophysical properties

    Get PDF
    The aim of this study is to investigate the photophysical properties of a cyanine dye analogue by performing first-principles calculations based on density functional theory (DFT) and time dependent-DFT. Cationic cyanine dyes are the subject of great importance due to their versatile applications and the tunability of their photophysical properties, such as by modifying their end groups and chain length. An example of this is the vinylene shift, which is experimentally known for these molecules, and it consists of a bathochromic (red) shift of approximately 100 nm of the 0–0 vibronic transition when a vinyl group is added to the polymethine chain. Our study shows that when the saturated moiety C2H4 of the cyclopentene ring is added to the chain, it interacts with the conjugated π-system, resulting in a smaller HOMO–LUMO gap. Here, we demonstrate the origin of this interaction and how it can be used to fine tune the absorption energies of this class of dyes

    Electronic Band Tuning and Multivalley Raman Scattering in Monolayer Transition Metal Dichalcogenides at High Pressures

    Get PDF
    Transition metal dichalcogenides (TMDs) possess spin-valley locking and spin-split K/K′ valleys, which have led to many fascinating physical phenomena. However, the electronic structure of TMDs also exhibits other conduction band minima with similar properties, the Q/Q′ valleys. The intervalley K–Q scattering enables interesting physical phenomena, including multivalley superconductivity, but those effects are typically hindered in monolayer TMDs due to the large K–Q energy difference (ΔEKQ). To unlock elusive multivalley phenomena in monolayer TMDs, it is desirable to reduce ΔEKQ, while being able to sensitively probe the valley shifts and the multivalley scattering processes. Here, we use high pressure to tune the electronic properties of monolayer MoS2 and WSe2 and probe K–Q crossing and multivalley scattering via double-resonance Raman (DRR) scattering. In both systems, we observed a pressure-induced enhancement of the double-resonance LA and 2LA Raman bands, which can be attributed to a band gap opening and ΔEKQ decrease. First-principles calculations and photoluminescence measurements corroborate this scenario. In our analysis, we also addressed the multivalley nature of the DRR bands for WSe2. Our work establishes the DRR 2LA and LA bands as sensitive probes of strain-induced modifications to the electronic structure of TMDs. Conversely, their intensity could potentially be used to monitor the presence of compressive or tensile strain in TMDs. Furthermore, the ability to probe K–K′ and K–Q scattering as a function of strain shall advance our understanding of different multivalley phenomena in TMDs such as superconductivity, valley coherence, and valley transport

    CCDC 1996094: Experimental Crystal Structure Determination

    No full text
    Related Article: Elida Betania Ariza Paez, Sergio Curcio, Natália P. Neme, Matheus J. S. Matos, Rodrigo S. Correa, Fabio Junio Pereira, Flaviane Francisco Hilário, Thiago Cazati, Jason Guy Taylor|2020|New J.Chem.|44|14615|doi:10.1039/D0NJ03525
    corecore