6 research outputs found
Peripheral Eosinophil Trends and Clinical Outcomes After Non-traumatic Subarachnoid Hemorrhage
Background/objective
Uncontrolled systemic inflammation after non-traumatic subarachnoid hemorrhage (SAH) is associated with worse outcomes. Changes in the peripheral eosinophil count have been linked to worse clinical outcomes after ischemic stroke, intracerebral hemorrhage, and traumatic brain injury. We aimed to investigate the association of eosinophil counts with clinical outcomes after SAH. Methods
This retrospective observational study included patients with SAH admitted from January 2009 to July 2016. Variables included demographics, modified Fisher scale (mFS), Hunt–Hess Scale (HHS), global cerebral edema (GCE), and the presence of any infection. Peripheral eosinophil counts were examined as part of routine clinical care on admission and daily for 10 days after aneurysmal rupture. Outcome measures included dichotomized discharge mortality, modified Ranked Scale (mRS) score, delayed cerebral ischemia (DCI), vasospasm, and need for ventriculoperitoneal shunt (VPS). Statistical tests included the chi-square test, Student\u27s t-test, and multivariable logistic regression (MLR) model. Results
A total of 451 patients were included. The median age was 54 (IQR 45, 63) years, and 295 (65.4%) were female patients. On admission, 95 patients (21.1%) had a high HHS (\u3e4), and 54 (12.0%) had GCE. A total of 110 (24.4%) patients had angiographic vasospasm, 88 (19.5%) developed DCI, 126 (27.9%) had an infection during hospitalization, and 56 (12.4%) required VPS. Eosinophil counts increased and peaked on days 8–10. Higher eosinophil counts on days 3–5 and day 8 were seen in patients with GCE (p \u3c 0.05). Higher eosinophil counts on days 7–9 (p \u3c 0.05) occurred in patients with poor discharge functional outcomes. In multivariable logistic regression models, higher day 8 eosinophil count was independently associated with worse discharge mRS (OR 6.72 [95% CI 1.27, 40.4], p = 0.03). Conclusion
This study demonstrated that a delayed increase in eosinophils after SAH occurs and may contribute to functional outcomes. The mechanism of this effect and the relationship with SAH pathophysiology merit further investigation
Systemic Inflammatory Markers of Persistent Cerebral Edema After Aneurysmal Subarachnoid Hemorrhage
BACKGROUND: Cerebral edema (CE) at admission is a surrogate marker of \u27early brain injury\u27 (EBI) after subarachnoid hemorrhage (SAH). Only recently has the focus on the changes in CE after SAH such as delayed resolution or newly developed CE been examined. Among several factors, an early systemic inflammatory response has been shown to be associated with CE. We investigate inflammatory markers in subjects with early CE which does not resolve, i.e., persistent CE after SAH.
METHODS: Computed tomography scans of SAH patients were graded at admission and at 7 days after SAH for CE using the 0-4 \u27subarachnoid hemorrhage early brain edema score\u27 (SEBES). SEBES ≤ 2 and SEBES ≥ 3 were considered good and poor grade, respectively. Serum samples from the same subject cohort were collected at 4 time periods (at \u3c 24 h [T1], at 24 to 48 h [T2]. 3-5 days [T3] and 6-8 days [T4] post-admission) and concentration levels of 17 cytokines (implicated in peripheral inflammatory processes) were measured by multiplex immunoassay. Multivariable logistic regression analyses were step-wisely performed to identify cytokines independently associated with persistent CE adjusting for covariables including age, sex and past medical history (model 1), and additional inclusion of clinical and radiographic severity of SAH and treatment modality (model 2).
RESULTS: Of the 135 patients enrolled in the study, 21 of 135 subjects (15.6%) showed a persistently poor SEBES grade. In multivariate model 1, higher Eotaxin (at T1 and T4), sCD40L (at T4), IL-6 (at T1 and T3) and TNF-α (at T4) were independently associated with persistent CE. In multivariate model 2, Eotaxin (at T4: odds ratio [OR] = 1.019, 95% confidence interval [CI] = 1.002-1.035) and possibly PDGF-AA (at T4), sCD40L (at T4), and TNF-α (at T4) was associated with persistent CE.
CONCLUSIONS: We identified serum cytokines at different time points that were independently associated with persistent CE. Specifically, persistent elevations of Eotaxin is associated with persistent CE after SAH
Early Systemic Glycolytic Shift After Aneurysmal Subarachnoid Hemorrhage is Associated with Functional Outcomes
BACKGROUND: Aneurysmal subarachnoid hemorrhage (aSAH) leads to a robust systemic inflammatory response. We hypothesized that an early systemic glycolytic shift occurs after aSAH, resulting in a unique metabolic signature and affecting systemic inflammation.
METHODS: Control patients and patients with aSAH were analyzed. Samples from patients with aSAH were collected within 24 h of aneurysmal rupture. Mass spectrometry-based metabolomics was performed to assess relative abundance of 16 metabolites involved in the tricarboxylic acid cycle, glycolysis, and pentose phosphate pathway. Principal component analysis was used to segregate control patients from patients with aSAH. Dendrograms were developed to depict correlations between metabolites and cytokines. Analytic models predicting functional outcomes were developed, and receiver operating curves were compared.
RESULTS: A total of 122 patients with aSAH and 38 control patients were included. Patients with aSAH had higher levels of glycolytic metabolites (3-phosphoglycerate/2-phosphoglycerate, lactate) but lower levels of oxidative metabolites (succinate, malate, fumarate, and oxalate). Patients with higher clinical severity (Hunt-Hess Scale score ≥ 4) had higher levels of glyceraldehyde 3-phosphate and citrate but lower levels of α-ketoglutarate and glutamine. Principal component analysis readily segregated control patients from patients with aSAH. Correlation analysis revealed distinct clusters in control patients that were not observed in patients with aSAH. Higher levels of fumarate were associated with good functional outcomes at discharge (odds ratio [OR] 1.76, 95% confidence interval [CI] 1.15-2.82) in multivariable models, whereas higher levels of citrate were associated with poor functional outcomes at discharge (OR 0.36, 95% CI 0.16-0.73) and at 3 months (OR 0.35, 95% CI 0.14-0.81). No associations were found with delayed cerebral ischemia. Levels of α-ketoglutarate and glutamine correlated with lower levels of interleukin-8, whereas fumarate was associated with lower levels of tumor necrosis factor alpha.
CONCLUSIONS: Aneurysmal subarachnoid hemorrhage results in a unique pattern of plasma metabolites, indicating a shift toward glycolysis. Higher levels of fumarate and lower levels of citrate were associated with better functional outcomes. These metabolites may represent targets to improve metabolism after aSAH
Lysophospholipids Are Associated With Outcomes in Hospitalized Patients With Mild Traumatic Brain Injury
Mild traumatic brain injury (mTBI) accounts for 70-90% of all TBI cases. Lipid metabolites have important roles in plasma membrane biogenesis, function, and cell signaling. As TBI can compromise plasma membrane integrity and alter brain cell function, we sought to identify circulating phospholipid alterations after mTBI, and determine if these changes were associated with clinical outcomes. Patients with mTBI (Glasgow Coma Score [GCS] ≥13 and loss of consciousness \u3c30 \u3emin) were recruited. A total of 84 mTBI subjects were enrolled after admission to a level I trauma center, with the majority having evidence of traumatic intracranial hemorrhage on brain computed tomography (CT). Plasma samples were collected within 24 h of injury with 32 mTBI subjects returning at 3 months after injury for a second plasma sample to be collected. Thirty-five healthy volunteers were enrolled as controls and had a one-time blood draw. Lipid metabolomics was performed on plasma samples from each subject. Fold change of selected lipid metabolites was determined. Multivariable regression models were created to test associations between lipid metabolites and discharge and 6-month Glasgow Outcomes Scale-Extended (GOSE) outcomes (dichotomized between good [GOSE ≥7] and bad [GOSE ≤6] functional outcomes). Plasma levels of 31 lipid metabolites were significantly associated with discharge GOSE using univariate models; three of these metabolites were significantly increased, while 14 were significantly decreased in subjects with good outcomes compared with subjects with poor outcomes. In multivariable logistic regression models, higher circulating levels of the lysophospholipids (LPL) 1-linoleoyl-glycerophosphocholine (GPC) (18:2), 1-linoleoyl-GPE (18:2), and 1-linolenoyl-GPC (18:3) were associated with both good discharge GOSE (odds ratio [OR] 12.2 [95% CI 3.35, 58.3]
Leucine-Rich Alpha-2-Glycoprotein 1 is a Systemic Biomarker of Early Brain Injury and Delayed Cerebral Ischemia After Subarachnoid Hemorrhage
BACKGROUND: After subarachnoid hemorrhage (SAH), early brain injury (EBI) and delayed cerebral ischemia (DCI) lead to poor outcomes. Discovery of biomarkers indicative of disease severity and predictive of DCI is important. We tested whether leucine-rich alpha-2-glycoprotein 1 (LRG1) is a marker of severity, DCI, and functional outcomes after SAH.
METHODS: We performed untargeted proteomics using mass spectrometry in plasma samples collected at \u3c 48 h of SAH in two independent discovery cohorts (n = 27 and n = 45) and identified LRG1 as a biomarker for DCI. To validate our findings, we used enzyme-linked immunosorbent assay and confirmed this finding in an internal validation cohort of plasma from 72 study participants with SAH (22 DCI and 50 non-DCI). Further, we investigated the relationship between LRG1 and markers of EBI, DCI, and poor functional outcomes (quantified by the modified Rankin Scale). We also measured cerebrospinal fluid (CSF) levels of LRG1 and investigated its relationship to EBI, DCI, and clinical outcomes.
RESULTS: Untargeted proteomics revealed higher plasma LRG1 levels across EBI severity and DCI in both discovery cohorts. In the validation cohort, the levels of LRG1 were higher in the DCI group compared with the non-DCI group (mean (SD): 95 [44] vs. 72 [38] pg/ml, p \u3c 0.05, Student\u27s t-test) and in study participants who proceeded to have poor functional outcomes (84 [39.3] vs. 72 [43.2] pg/ml, p \u3c 0.05). Elevated plasma LRG1 levels were also associated with markers of EBI. However, CSF levels of LRG1 were not associated with EBI severity or the occurrence of DCI.
CONCLUSIONS: Plasma LRG1 is a biomarker for EBI, DCI, and functional outcomes after SAH. Further studies to elucidate the role of LRG1 in the pathophysiology of SAH are needed
Time Course of Peripheral Leukocytosis and Clinical Outcomes After Aneurysmal Subarachnoid Hemorrhage
<jats:p><jats:bold>Objective:</jats:bold>Systemic inflammation after subarachnoid hemorrhage (SAH) is implicated in delayed cerebral ischemia (DCI) and adverse clinical outcomes. We hypothesize that early changes in peripheral leukocytes will be associated with outcomes after SAH.</jats:p><jats:p><jats:bold>Methods:</jats:bold>SAH patients admitted between January 2009 and December 2016 were enrolled into a prospective observational study and were assessed for Hunt Hess Scale (HHS) at admission, DCI, and modified Ranked Scale (mRS) at discharge. Total white blood cell (WBC) counts and each component of the differential cell count were determined on the day of admission (day 0) to 8 days after bleed (day 8). Global cerebral edema (GCE) was assessed on admission CT, and presence of any infection was determined. Statistical tests included student's<jats:italic>t</jats:italic>-test, Chi-square test, and multivariate logistic regression (MLR) models.</jats:p><jats:p><jats:bold>Results:</jats:bold>A total of 451 subjects were analyzed. Total WBCs and neutrophils decreased initially reaching a minimum at day 4–5 after SAH. Monocyte count increased gradually after SAH and peaked between day 6–8, while basophils and lymphocytes decreased initially from day 0 to 1 and steadily increased thereafter. Neutrophil to lymphocyte ratio (NLR) reached a peak on day 1 and decreased thereafter. WBCs, neutrophils, monocytes, and NLR were higher in patients with DCI and poor functional outcomes. WBCs, neutrophils, and NLR were higher in subjects who developed infections. In MLR models, neutrophils and monocytes were associated with DCI and worse functional outcomes, while NLR was only associated with worse functional outcomes. Occurrence of infection was associated with poor outcome. Neutrophils and NLR were associated with infection, while monocytes were not. Monocytes were higher in males, and ROC curve analysis revealed improved ability of monocytes to predict DCI and poor functional outcomes in male subjects.</jats:p><jats:p><jats:bold>Conclusions:</jats:bold>Monocytosis was associated with DCI and poor functional outcomes after SAH. The association between neutrophils and NLR and infection may impact outcomes. Early elevation in monocytes had an improved ability to predict DCI and poor functional outcomes in males, which was independent of the occurrence of infection.</jats:p>