1,539 research outputs found
Classical and relativistic long-term time variations of some observables for transiting exoplanets
We analytically work out the long-term, i.e. averaged over one orbital
revolution, time variations of some direct observable quantities Y induced by
classical and general relativistic dynamical perturbations of the two-body
pointlike Newtonian acceleration in the case of transiting exoplanets moving
along elliptic orbits. More specifically, the observables with which we
deal are the transit duration, the radial velocity and the time interval
between primary and secondary eclipses. The dynamical effects considered are
the centrifugal oblateness of both the star and the planet, their tidal bulges
mutually raised on each other, a distant third body X, and general relativity
(both Schwarzschild and Lense-Thirring). We take into account the effects due
to the perturbations of all the Keplerian orbital elements involved in a
consistent and uniform way. First, we explicitly compute their instantaneous
time variations due to the dynamical effects considered and plug them in the
general expression for the instantaneous change of Y; then, we take the overall
average over one orbital revolution of the so-obtained instantaneous rate specialized to the perturbations considered. Instead, somewhat hybrid
expressions can be often found in literature: in them, the secular precession
of, typically, the periastron only is straightforwardly inserted into
instantaneous formulas. Numerical evaluations of the obtained results are given
for a typical star-planet scenario and compared with the expected observational
accuracies over a time span 10 yr long. Our results are, in principle, valid
also for other astronomical scenarios. They may allow, e.g., for designing
various tests of gravitational theories with natural and artificial bodies in
our solar system. (Abridged)Comment: LaTex2e, 19 pages, 5 figures, 2 tables. Some references updated. To
appear in Monthly Notices of the Royal Astronomical Society (MNRAS
Species Specificity in Major Urinary Proteins by Parallel Evolution
Species-specific chemosignals, pheromones, regulate social behaviors such as aggression, mating, pup-suckling, territory establishment, and dominance. The identity of these cues remains mostly undetermined and few mammalian pheromones have been identified. Genetically-encoded pheromones are expected to exhibit several different mechanisms for coding 1) diversity, to enable the signaling of multiple behaviors, 2) dynamic regulation, to indicate age and dominance, and 3) species-specificity. Recently, the major urinary proteins (Mups) have been shown to function themselves as genetically-encoded pheromones to regulate species-specific behavior. Mups are multiple highly related proteins expressed in combinatorial patterns that differ between individuals, gender, and age; which are sufficient to fulfill the first two criteria. We have now characterized and fully annotated the mouse Mup gene content in detail. This has enabled us to further analyze the extent of Mup coding diversity and determine their potential to encode species-specific cues
Accreting Millisecond X-Ray Pulsars
Accreting Millisecond X-Ray Pulsars (AMXPs) are astrophysical laboratories
without parallel in the study of extreme physics. In this chapter we review the
past fifteen years of discoveries in the field. We summarize the observations
of the fifteen known AMXPs, with a particular emphasis on the multi-wavelength
observations that have been carried out since the discovery of the first AMXP
in 1998. We review accretion torque theory, the pulse formation process, and
how AMXP observations have changed our view on the interaction of plasma and
magnetic fields in strong gravity. We also explain how the AMXPs have deepened
our understanding of the thermonuclear burst process, in particular the
phenomenon of burst oscillations. We conclude with a discussion of the open
problems that remain to be addressed in the future.Comment: Review to appear in "Timing neutron stars: pulsations, oscillations
and explosions", T. Belloni, M. Mendez, C.M. Zhang Eds., ASSL, Springer;
[revision with literature updated, several typos removed, 1 new AMXP added
MARVELS-1: A face-on double-lined binary star masquerading as a resonant planetary system; and consideration of rare false positives in radial velocity planet searches
We have analyzed new and previously published radial velocity observations of
MARVELS-1, known to have an ostensibly substellar companion in a ~6- day orbit.
We find significant (~100 m/s) residuals to the best-fit model for the
companion, and these residuals are naively consistent with an interior giant
planet with a P = 1.965d in a nearly perfect 3:1 period commensuribility
(|Pb/Pc - 3| < 10^{-4}). We have performed several tests for the reality of
such a companion, including a dynamical analysis, a search for photometric
variability, and a hunt for contaminating stellar spectra. We find many reasons
to be critical of a planetary interpretation, including the fact that most of
the three-body dynamical solutions are unstable. We find no evidence for
transits, and no evidence of stellar photometric variability. We have
discovered two apparent companions to MARVELS-1 with adaptive optics imaging at
Keck; both are M dwarfs, one is likely bound, and the other is likely a
foreground object. We explore false-alarm scenarios inspired by various
curiosities in the data. Ultimately, a line profile and bisector analysis lead
us to conclude that the ~100 m/s residuals are an artifact of spectral
contamination from a stellar companion contributing ~15-30% of the optical
light in the system. We conclude that origin of this contamination is the
previously detected radial velocity companion to MARVELS-1, which is not, as
previously reported, a brown dwarf, but in fact a G dwarf in a face-on orbit.Comment: ApJ 770, 119. 24 pp emulate ApJ style, 12 figures (One is very
large). v2: corrects two (important!) errors: A priori chance of this
alignment or worse is 0.1% (not 0.01%) and the primary has THREE total
companions (not four
Size-Frequency Distributions along a Latitudinal Gradient in Middle Permian Fusulinoideans
Geographic gradients in body size within and among living species are commonly used to identify controls on the long-term evolution of organism size. However, the persistence of these gradients over evolutionary time remains largely unknown because ancient biogeographic variation in organism size is poorly documented. Middle Permian fusulinoidean foraminifera are ideal for investigating the temporal persistence of geographic gradients in organism size because they were diverse and abundant along a broad range of paleo-latitudes during this interval (∼275–260 million years ago). In this study, we determined the sizes of Middle Permian fusulinoidean fossils from three different paleo-latitudinal zones in order to examine the relationship between the size of foraminifers and regional environment. We recovered the following results: keriothecal fusulinoideans are substantially larger than nonkeriothecal fusulinoideans; fusulinoideans from the equatorial zone are typically larger than those from the north and south transitional zones; neoschwagerinid specimens within a single species are generally larger in the equatorial zone than those in both transitional zones; and the nonkeriothecal fusulinoideans Staffellidae and Schubertellidae have smaller size in the north transitional zone. Fusulinoidean foraminifers differ from most other marine taxa in exhibiting larger sizes closer to the equator, contrary to Bergmann's rule. Meridional variation in seasonality, water temperature, nutrient availability, and carbonate saturation level are all likely to have favored or enabled larger sizes in equatorial regions. Temporal variation in atmospheric oxygen concentrations have been shown to account for temporal variation in fusulinoidean size during Carboniferous and Permian time, but oxygen availability appears unlikely to explain biogeographic variation in fusulinoidean sizes, because dissolved oxygen concentrations in seawater typically increase away from the equator due to declining seawater temperatures. Consequently, our findings highlight the fact that spatial gradients in organism size are not always controlled by the same factors that govern temporal trends within the same clade
Measurement of the Branching Fraction for B- --> D0 K*-
We present a measurement of the branching fraction for the decay B- --> D0
K*- using a sample of approximately 86 million BBbar pairs collected by the
BaBar detector from e+e- collisions near the Y(4S) resonance. The D0 is
detected through its decays to K- pi+, K- pi+ pi0 and K- pi+ pi- pi+, and the
K*- through its decay to K0S pi-. We measure the branching fraction to be
B.F.(B- --> D0 K*-)= (6.3 +/- 0.7(stat.) +/- 0.5(syst.)) x 10^{-4}.Comment: 7 pages, 1 postscript figure, submitted to Phys. Rev. D (Rapid
Communications
A Study of Time-Dependent CP-Violating Asymmetries and Flavor Oscillations in Neutral B Decays at the Upsilon(4S)
We present a measurement of time-dependent CP-violating asymmetries in
neutral B meson decays collected with the BABAR detector at the PEP-II
asymmetric-energy B Factory at the Stanford Linear Accelerator Center. The data
sample consists of 29.7 recorded at the
resonance and 3.9 off-resonance. One of the neutral B mesons,
which are produced in pairs at the , is fully reconstructed in
the CP decay modes , , , () and , or in flavor-eigenstate
modes involving and (). The flavor of the other neutral B meson is tagged at the time of
its decay, mainly with the charge of identified leptons and kaons. The proper
time elapsed between the decays is determined by measuring the distance between
the decay vertices. A maximum-likelihood fit to this flavor eigenstate sample
finds . The value of the asymmetry amplitude is determined from
a simultaneous maximum-likelihood fit to the time-difference distribution of
the flavor-eigenstate sample and about 642 tagged decays in the
CP-eigenstate modes. We find , demonstrating that CP violation exists in the neutral B meson
system. (abridged)Comment: 58 pages, 35 figures, submitted to Physical Review
Evidence for the Rare Decay B -> K*ll and Measurement of the B -> Kll Branching Fraction
We present evidence for the flavor-changing neutral current decay and a measurement of the branching fraction for the related
process , where is either an or
pair. These decays are highly suppressed in the Standard Model,
and they are sensitive to contributions from new particles in the intermediate
state. The data sample comprises
decays collected with the Babar detector at the PEP-II storage ring.
Averaging over isospin and lepton flavor, we obtain the branching
fractions and , where the
uncertainties are statistical and systematic, respectively. The significance of
the signal is over , while for it is .Comment: 7 pages, 2 postscript figues, submitted to Phys. Rev. Let
Giant Outer Transiting Exoplanet Mass (GOT 'EM) Survey. IV. Long-term Doppler Spectroscopy for 11 Stars Thought to Host Cool Giant Exoplanets
Discovering and characterizing exoplanets at the outer edge of the transit
method's sensitivity has proven challenging owing to geometric biases and the
practical difficulties associated with acquiring long observational baselines.
Nonetheless, a sample of giant exoplanets on orbits longer than 100 days has
been identified by transit hunting missions. We present long-term Doppler
spectroscopy for 11 such systems with observation baselines spanning a few
years to a decade. We model these radial velocity observations jointly with
transit photometry to provide initial characterizations of these objects and
the systems in which they exist. Specifically, we make new precise mass
measurements for four long-period giant exoplanets (Kepler-111 c, Kepler-553 c,
Kepler-849 b, and PH-2 b), we place new upper limits on mass for four others
(Kepler-421 b, KOI-1431.01, Kepler-1513 b, and Kepler-952 b), and we show that
several "confirmed" planets are in fact not planetary at all. We present these
findings to complement similar efforts focused on closer-in short-period giant
planets, and with the hope of inspiring future dedicated studies of cool giant
exoplanets.Comment: 35 pages, 24 figures, 11 tables. Accepted for publication in ApJ
Supplemen
Recommended from our members
Reproductive Cycle-associated Mood Symptoms In Women With Major Depression And Bipolar Disorder
Background: We sought to determine the prevalence of, and association between, reproductive cycle-associated mood symptoms in women with affective disorders. We hypothesized that symptoms would correlate with each other across a woman's reproductive life span in both major depression (MDD) and bipolar I disorder (BP). Methods: 2412 women with, MDD or BP were asked standardized questions about mood symptoms prior to menstruation, within a month of childbirth and during perimenopause. Lifetime rates for each of these symptom types were determined and an odds ratio was calculated correlating each of the types with the others. Results: Of 2524 women with mood disorders, 67.7% reported premenstrual symptoms. Of those at risk, 20.9% reported postpartum symptoms and 26.4% reported perimenopausal symptoms. The rates did not differ between women with MDD and BP but were significantly different from women who were never ill. The symptoms were significantly correlated in women with MDD with odds ratios from 1.66 to 1.82, but were not in women with BP. Limitations: This is a secondary analysis of a sample that was collected for other purposes and is based upon retrospecitve reporting. Conclusions: Reproductive cycle-associated mood symptoms were commonly reported in women with mood disorders and did not differ based on diagnosis. In MDD, but not BP, the occurrence of these symptoms was trait-like as the presence of one predicted the occurrence of the others. Further prospective study is required to clarify the determinants of this trait
- …