18,599 research outputs found

    Quadrupole moment of a magnetically confined mountain on an accreting neutron star: effect of the equation of state

    Full text link
    Magnetically confined mountains on accreting neutron stars are promising sources of continuous-wave gravitational radiation and are currently the targets of directed searches with long-baseline detectors like the Laser Interferometer Gravitational Wave Observatory (LIGO). In this paper, previous ideal-magnetohydrodynamic models of isothermal mountains are generalized to a range of physically motivated, adiabatic equations of state. It is found that the mass ellipticity drops substantially, from \epsilon ~ 3e-4 (isothermal) to \epsilon ~ 9e-7 (non-relativistic degenerate neutrons), 6e-8 (relativistic degenerate electrons) and 1e-8 (non-relativistic degenerate electrons) (assuming a magnetic field of 3e12 G at birth). The characteristic mass M_{c} at which the magnetic dipole moment halves from its initial value is also modified, from M_{c}/M_{\sun} ~ 5e-4 (isothermal) to M_{c}/M_{\sun} ~ 2e-6, 1e-7, and 3e-8 for the above three equations of state, respectively. Similar results are obtained for a realistic, piecewise-polytropic nuclear equation of state. The adiabatic models are consistent with current LIGO upper limits, unlike the isothermal models. Updated estimates of gravitational-wave detectability are made. Monte Carlo simulations of the spin distribution of accreting millisecond pulsars including gravitational-wave stalling agree better with observations for certain adiabatic equations of state, implying that X-ray spin measurements can probe the equation of state when coupled with magnetic mountain models.Comment: 20 pages, 15 figures, to be published in MNRA

    Subspace representations in ab initio methods for strongly correlated systems

    Full text link
    We present a generalized definition of subspace occupancy matrices in ab initio methods for strongly correlated materials, such as DFT+U and DFT+DMFT, which is appropriate to the case of nonorthogonal projector functions. By enforcing the tensorial consistency of all matrix operations, we are led to a subspace projection operator for which the occupancy matrix is tensorial and accumulates only contributions which are local to the correlated subspace at hand. For DFT+U in particular, the resulting contributions to the potential and ionic forces are automatically Hermitian, without resort to symmetrization, and localized to their corresponding correlated subspace. The tensorial invariance of the occupancies, energies and ionic forces is preserved. We illustrate the effect of this formalism in a DFT+U study using self-consistently determined projectors.Comment: 15 pages, 8 figures. This version (v2) matches that accepted for Physical Review B on 15th April 201

    Generalized Wannier functions: a comparison of molecular electric dipole polarizabilities

    Full text link
    Localized Wannier functions provide an efficient and intuitive means by which to compute dielectric properties from first principles. They are most commonly constructed in a post-processing step, following total-energy minimization. Nonorthogonal generalized Wannier functions (NGWFs) [Skylaris et al., Phys. Rev. B 66, 035119 11 (2002); Skylaris et al., J. Chem. Phys. 122, 084119 (2005)] may also be optimized in situ, in the process of solving for the ground-state density. We explore the relationship between NGWFs and orthonormal, maximally localized Wannier functions (MLWFs) [Marzari and Vanderbilt, Phys. Rev. B 56, 12847 (1997); Souza, Marzari, and Vanderbilt, ibid. 65, 035109 (2001)], demonstrating that NGWFs may be used to compute electric dipole polarizabilities efficiently, with no necessity for post-processing optimization, and with an accuracy comparable to MLWFs.Comment: 5 pages, 1 figure. This version matches that accepted for Physical Review B on 4th May 201

    Illumination waveform optimization for time-of-flight range imaging cameras

    Get PDF
    Time-of-flight range imaging sensors acquire an image of a scene, where in addition to standard intensity information, the range (or distance) is also measured concurrently by each pixel. Range is measured using a correlation technique, where an amplitude modulated light source illuminates the scene and the reflected light is sampled by a gain modulated image sensor. Typically the illumination source and image sensor are amplitude modulated with square waves, leading to a range measurement linearity error caused by aliased harmonic components within the correlation waveform. A simple method to improve measurement linearity by reducing the duty cycle of the illumination waveform to suppress problematic aliased harmonic components is demonstrated. If the total optical power is kept constant, the measured correlation waveform amplitude also increases at these reduced illumination duty cycles. Measurement performance is evaluated over a range of illumination duty cycles, both for a standard range imaging camera configuration, and also using a more complicated phase encoding method that is designed to cancel aliased harmonics during the sampling process. The standard configuration benefits from improved measurement linearity for illumination duty cycles around 30%, while the measured amplitude, hence range precision, is increased for both methods as the duty cycle is reduced below 50% (while maintaining constant optical power)

    Persistence and Academic Success in University

    Get PDF
    We use a unique set of linked administrative data sets to explore the determinants of persistence and academic success in university. The explanatory power of high school grades greatly dominates that of other variables such as university program, gender, and neighbourhood and high school characteristics. Indeed, high school and neighbourhood characteristics, such as average standardized test scores for a high school or average neighbourhood income, have weak links with success in university.University Success, High School, Neighbourhood

    Gravitational waves from an accreting neutron star with a magnetic mountain

    Get PDF
    We calculate the amplitude of gravitational waves from a neutron star accreting symmetrically at its magnetic poles. The magnetic field, which is compressed into an equatorial belt during accretion, confines accreted matter in a mountain at the magnetic pole, producing gravitational waves. We compute hydromagnetic equilibria and the corresponding quadrupole moment as a function of the accreted mass, Ma, finding the polarization- and orientation- averaged wave strain at Earth to be h_c = 6.3 × 10^(–25)(M_a/10^(–5)M_☉)(ƒ/0.6kHz)^2(d/1kpc)^(–1) for a range of conditions, where ƒ is the wave frequency and d is the distance to the source. This is ~ 10^2 times greater than previous estimates, which failed to treat the mass-flux distribution self-consistently with respect to flux-freezin

    Persistence and Academic Success in University

    Get PDF
    We use a unique set of linked administrative data sets to explore the determinants of persistence and academic success in university. The explanatory power of high school grades greatly dominates that of other variables such as university program, gender, and neighbourhood and high school characteristics. Indeed, high school and neighbourhood characteristics, such as average standardized test scores for a high school or average neighbourhood income, have weak links with success in university.university success, high school, neighbourhood.

    The Impact of Cost on the Choice of University: Evidence from Ontario

    Get PDF
    This paper provides the first Canadian study of the link between cost to the student and the choice of university. Over the past two decades, there has been a substantial increase in the differences among Ontario universities in “net cost” defined as tuition and fees minus the expected value to an academically strong student of a guaranteed merit scholarship. Our estimates generally indicate no relationship between net cost and the overall share of strong applicants that a university is able to attract. An increase in net cost is associated with an increase in the ratio of strong students from high income neighborhoods to strong students from middle income and low income neighborhoods in Arts and Science programs but not in Commerce and Engineering. Finally, more advantaged students are more likely to attend university, but merit aid is not of disproportionate benefit to those from more economically advantaged backgrounds given registration.health education and welfare, university, choice, cost.

    Characterization of modulated time-of-flight range image sensors

    Get PDF
    A number of full field image sensors have been developed that are capable of simultaneously measuring intensity and distance (range) for every pixel in a given scene using an indirect time-of-flight measurement technique. A light source is intensity modulated at a frequency between 10–100 MHz, and an image sensor is modulated at the same frequency, synchronously sampling light reflected from objects in the scene (homodyne detection). The time of flight is manifested as a phase shift in the illumination modulation envelope, which can be determined from the sampled data simultaneously for each pixel in the scene. This paper presents a method of characterizing the high frequency modulation response of these image sensors, using a pico-second laser pulser. The characterization results allow the optimal operating parameters, such as the modulation frequency, to be identified in order to maximize the range measurement precision for a given sensor. A number of potential sources of error exist when using these sensors, including deficiencies in the modulation waveform shape, duty cycle, or phase, resulting in contamination of the resultant range data. From the characterization data these parameters can be identified and compensated for by modifying the sensor hardware or through post processing of the acquired range measurements
    • 

    corecore