900 research outputs found
Ligand Discrimination in Myoglobin from Linear-Scaling DFT+U
Myoglobin modulates the binding of diatomic molecules to its heme group via
hydrogen-bonding and steric interactions with neighboring residues, and is an
important benchmark for computational studies of biomolecules. We have
performed calculations on the heme binding site and a significant proportion of
the protein environment (more than 1000 atoms) using linear-scaling density
functional theory and the DFT+U method to correct for self-interaction errors
associated with localized 3d states. We confirm both the hydrogen-bonding
nature of the discrimination effect (3.6 kcal/mol) and assumptions that the
relative strain energy stored in the protein is low (less than 1 kcal/mol). Our
calculations significantly widen the scope for tackling problems in drug design
and enzymology, especially in cases where electron localization, allostery or
long-ranged polarization influence ligand binding and reaction.Comment: 15 pages, 3 figures. Supplementary material 8 pages, 3 figures. This
version matches that accepted for J. Phys. Chem. Lett. on 10th May 201
Renormalization of myoglobin-ligand binding energetics by quantum many-body effects
We carry out a first-principles atomistic study of the electronic mechanisms
of ligand binding and discrimination in the myoglobin protein. Electronic
correlation effects are taken into account using one of the most advanced
methods currently available, namely a linear-scaling density functional theory
(DFT) approach wherein the treatment of localized iron 3d electrons is further
refined using dynamical mean-field theory (DMFT). This combination of methods
explicitly accounts for dynamical and multi-reference quantum physics, such as
valence and spin fluctuations, of the 3d electrons, whilst treating a
significant proportion of the protein (more than 1000 atoms) with density
functional theory. The computed electronic structure of the myoglobin complexes
and the nature of the Fe-O2 bonding are validated against experimental
spectroscopic observables. We elucidate and solve a long standing problem
related to the quantum-mechanical description of the respiration process,
namely that DFT calculations predict a strong imbalance between O2 and CO
binding, favoring the latter to an unphysically large extent. We show that the
explicit inclusion of many body-effects induced by the Hund's coupling
mechanism results in the correct prediction of similar binding energies for
oxy- and carbonmonoxymyoglobin.Comment: 7 pages, 5 figures. Accepted for publication in the Proceedings of
the National Academy of Sciences of the United States of America (2014). For
the published article see
http://www.pnas.org/content/early/2014/04/09/1322966111.abstrac
Rugby (the religion of Wales) and its influence on the Catholic church: should Pope Benedict XVI be worried?
Objective To explore the perceived wisdom that papal mortality is related to the success of the Welsh rugby union team
Development of a Classical Force Field for the Oxidised Si Surface: Application to Hydrophilic Wafer Bonding
We have developed a classical two- and three-body interaction potential to
simulate the hydroxylated, natively oxidised Si surface in contact with water
solutions, based on the combination and extension of the Stillinger-Weber
potential and of a potential originally developed to simulate SiO2 polymorphs.
The potential parameters are chosen to reproduce the structure, charge
distribution, tensile surface stress and interactions with single water
molecules of a natively oxidised Si surface model previously obtained by means
of accurate density functional theory simulations. We have applied the
potential to the case of hydrophilic silicon wafer bonding at room temperature,
revealing maximum room temperature work of adhesion values for natively
oxidised and amorphous silica surfaces of 97 mJ/m2 and 90mJ/m2, respectively,
at a water adsorption coverage of approximately 1 monolayer. The difference
arises from the stronger interaction of the natively oxidised surface with
liquid water, resulting in a higher heat of immersion (203 mJ/m2 vs. 166
mJ/m2), and may be explained in terms of the more pronounced water structuring
close to the surface in alternating layers of larger and smaller density with
respect to the liquid bulk. The computed force-displacement bonding curves may
be a useful input for cohesive zone models where both the topographic details
of the surfaces and the dependence of the attractive force on the initial
surface separation and wetting can be taken into account
Stress Development and Impurity Segregation during Oxidation of the Si(100) Surface
We have studied the segregation of P and B impurities during oxidation of the
Si(100) surface by means of combined static and dynamical first-principles
simulations based on density functional theory. In the bare surface, dopants
segregate to chemically stable surface sites or to locally compressed
subsurface sites. Surface oxidation is accompanied by development of tensile
surface stress up to 2.9 N/m at a coverage of 1.5 monolayers of oxygen and by
formation of oxidised Si species with charges increasing approximately linearly
with the number of neighbouring oxygen atoms. Substitutional P and B defects
are energetically unstable within the native oxide layer, and are
preferentially located at or beneath the Si/SiOx interface. Consistently,
first-principles molecular dynamics simulations of native oxide formation on
doped surfaces reveal that dopants avoid the formation of P-O and B-O bonds,
suggesting a surface oxidation mechanism whereby impurities remain trapped at
the Si/SiOx interface. This seems to preclude a direct influence of impurities
on the surface electrostatics and, hence, on the interactions with an external
environment
Stellar explosion in the weak field approximation of the Brans-Dicke theory
We treat a very crude model of an exploding star, in the weak field
approximation of the Brans-Dicke theory, in a scenario that resembles some
characteristics data of a Type Ia Supernova. The most noticeable feature, in
the electromagnetic component, is the relationship between the absolute
magnitude at maximum brightness of the star and the decline rate in one
magnitude from that maximum. This characteristic has become one of the most
accurate method to measure luminosity distances to objects at cosmological
distances. An interesting result is that the active mass associated with the
scalar field is totally radiated to infinity, representing a mass loss in the
ratio of the "tensor" component to the scalar component of 1 to ( is the Brans-Dicke parameter), in agreement with a general result
of Hawking. Then, this model shows explicitly, in a dynamical case, the
mechanism of radiation of scalar field, which is necessary to understand the
Hawking result.Comment: 11 pages, no figures. Published in Class. Quantum Gravity V22 (2005
Toward ab initio optical spectroscopy of the Fenna-Matthews-Olson complex
We present progress toward a first-principles parametrization of the Hamiltonian of the Fenna–Matthews–Olson pigment–protein complex, a molecule that has become key to understanding the role of quantum dynamics in photosynthetic exciton energy transfer. To this end, we have performed fully quantum mechanical calculations on each of the seven bacteriochlorophyll pigments that make up the complex, including a significant proportion of their protein environment (more than 2000 atoms), using linear-scaling density functional theory exploiting a recent development for the computation of excited states. Local pigment transition energies and interpigment coupling between optical transitions have been calculated and are in good agreement with the literature consensus. Comparisons between simulated and experimental optical spectra point toward future work that may help to elucidate important design principles in these nanoscale devices
ONETEP + TOSCAM: uniting dynamical mean field theory and linear-scaling density functional theory
We introduce the unification of dynamical mean field theory (DMFT) and
linear-scaling density functional theory (DFT), as recently implemented in
ONETEP, a linear-scaling DFT package, and TOSCAM, a DMFT toolbox. This code can
account for strongly correlated electronic behavior while simultaneously
including the effects of the environment, making it ideally suited for studying
complex and heterogeneous systems containing transition metals and lanthanides,
such as metalloproteins. We systematically introduce the necessary formalism,
which must account for the non-orthogonal basis set used by ONETEP. In order to
demonstrate the capabilities of this code, we apply it to carbon
monoxide-ligated iron porphyrin and explore the distinctly quantum-mechanical
character of the iron electrons during the process of photodissociation.Comment: Contains 46 pages and 12 figures, including 5 pages of supplementary
materia
Expanding the scope of density derived electrostatic and chemical charge partitioning to thousands of atoms
The density derived electrostatic and chemical (DDEC/c3) method is implemented into the onetep program to compute net atomic charges (NACs), as well as higher-order atomic multipole moments, of molecules, dense solids, nanoclusters, liquids, and biomolecules using linear-scaling density functional theory (DFT) in a distributed memory parallel computing environment. For a >1000 atom model of the oxygenated myoglobin protein, the DDEC/c3 net charge of the adsorbed oxygen molecule is approximately -1e (in agreement with the Weiss model) using a dynamical mean field theory treatment of the iron atom, but much smaller in magnitude when using the generalized gradient approximation. For GaAs semiconducting nanorods, the system dipole moment using the DDEC/c3 NACs is about 5% higher in magnitude than the dipole computed directly from the quantum mechanical electron density distribution, and the DDEC/c3 NACs reproduce the electrostatic potential to within approximately 0.1 V on the nanorod’s solvent-accessible surface. As examples of conducting materials, we study (i) a 55-atom Pt cluster with an adsorbed CO molecule and (ii) the dense solids Mo2C and Pd3V. Our results for solid Mo2C and Pd3V confirm the necessity of a constraint enforcing exponentially decaying electron density in the tails of buried atoms
- …