4,490 research outputs found

    Finding Top-k Dominance on Incomplete Big Data Using Map-Reduce Framework

    Full text link
    Incomplete data is one major kind of multi-dimensional dataset that has random-distributed missing nodes in its dimensions. It is very difficult to retrieve information from this type of dataset when it becomes huge. Finding top-k dominant values in this type of dataset is a challenging procedure. Some algorithms are present to enhance this process but are mostly efficient only when dealing with a small-size incomplete data. One of the algorithms that make the application of TKD query possible is the Bitmap Index Guided (BIG) algorithm. This algorithm strongly improves the performance for incomplete data, but it is not originally capable of finding top-k dominant values in incomplete big data, nor is it designed to do so. Several other algorithms have been proposed to find the TKD query, such as Skyband Based and Upper Bound Based algorithms, but their performance is also questionable. Algorithms developed previously were among the first attempts to apply TKD query on incomplete data; however, all these had weak performances or were not compatible with the incomplete data. This thesis proposes MapReduced Enhanced Bitmap Index Guided Algorithm (MRBIG) for dealing with the aforementioned issues. MRBIG uses the MapReduce framework to enhance the performance of applying top-k dominance queries on huge incomplete datasets. The proposed approach uses the MapReduce parallel computing approach using multiple computing nodes. The framework separates the tasks between several computing nodes that independently and simultaneously work to find the result. This method has achieved up to two times faster processing time in finding the TKD query result in comparison to previously presented algorithms
    corecore