110 research outputs found
OGLE-ing the Magellanic System: RR Lyrae Stars in the Bridge
We use the extended and updated Optical Gravitational Lensing Experiment (OGLE) Collection of Variable Stars to thoroughly analyze the distribution of RR Lyrae stars in the Magellanic Bridge. We use photometric metallicities to derive the absolute Wesenheit magnitude and individual distance of each RR Lyrae star. We confirm results from our earlier study showing that RR Lyrae stars are present in between the Magellanic Clouds, though their three-dimensional distribution more resembles two extended overlapping structures than a strict bridge-like connection. The contours do connect in the southern parts of the Bridge, albeit on a level too low to state that an evident connection exists. To test the sample numerically, we use multi-Gaussian fitting and conclude that there is no additional population or overdensity located in the Bridge. We also try to reproduce results on the putative RR Lyrae Magellanic Bridge stream by selecting RR Lyrae candidates from Gaia Data Release 1. We show that we are not able to obtain the evident connection of the Clouds without many spurious sources in the sample, as the cuts are not able to remove artifacts without eliminating the evident connection at the same time. Moreover, for the first time, we present the Gaia Data Release 2 RR Lyrae stars in the Magellanic Bridge area and show that their distribution matches our results
OGLE-ing the Magellanic System: RR Lyrae Stars in the Bridge
We use the extended and updated Optical Gravitational Lensing Experiment (OGLE) Collection of Variable Stars to thoroughly analyze the distribution of RR Lyrae stars in the Magellanic Bridge. We use photometric metallicities to derive the absolute Wesenheit magnitude and individual distance of each RR Lyrae star. We confirm results from our earlier study showing that RR Lyrae stars are present in between the Magellanic Clouds, though their three-dimensional distribution more resembles two extended overlapping structures than a strict bridge-like connection. The contours do connect in the southern parts of the Bridge, albeit on a level too low to state that an evident connection exists. To test the sample numerically, we use multi-Gaussian fitting and conclude that there is no additional population or overdensity located in the Bridge. We also try to reproduce results on the putative RR Lyrae Magellanic Bridge stream by selecting RR Lyrae candidates from Gaia Data Release 1. We show that we are not able to obtain the evident connection of the Clouds without many spurious sources in the sample, as the cuts are not able to remove artifacts without eliminating the evident connection at the same time. Moreover, for the first time, we present the Gaia Data Release 2 RR Lyrae stars in the Magellanic Bridge area and show that their distribution matches our results
The OGLE Collection of Variable Stars. One Thousand Heartbeat Stars in the Galactic Bulge and Magellanic Clouds
We present a collection of 991 heartbeat star (HBS) candidates found in the
Optical Gravitational Lensing Experiment (OGLE) project data archive. We
discuss the selection process of the HBS candidates and the structure of the
catalog itself. It consists of 512 stars located toward the Galactic bulge
(GB), 439 stars located in the Large Magellanic Cloud (LMC), and 40 in the
Small Magellanic Cloud (SMC). The collection contains two large groups of HBSs
with different physical properties. The main distinction between the two groups
is the evolutionary status of the primary star. The first group of about 100
systems contains a hot main-sequence (MS) or a Hertzsprung-gap primary star,
while the second group of about 900 systems includes a red giant (RG). For each
star, we provide two-decade-long time-series photometry, in the Cousins -
and Johnson -band filters, obtained by the OGLE project. We also present
basic observational information as well as orbital parameters derived from the
light curve modeling.Comment: 15 pages, 10 figures, 5 tables, submitted to AAS Journals. The full
machine-readable tables and links to the catalog will be available after the
acceptance of the pape
OGLE-2016-BLG-1227L: A Wide-separation Planet from a Very Short-timescale Microlensing Event
We present the analysis of the microlensing event OGLE-2016-BLG-1227. The light curve of this short-duration event appears to be a single-lens event affected by severe finite-source effects. Analysis of the light curve based on single-lens single-source (1L1S) modeling yields very small values of the event timescale, t_E ∼ 3.5 days, and the angular Einstein radius, θ_E ∼ 0.009 mas, making the lens a candidate of a free-floating planet. Close inspection reveals that the 1L1S solution leaves small residuals with amplitude ΔI ≲ 0.03 mag. We find that the residuals are explained by the existence of an additional widely-separated heavier lens component, indicating that the lens is a wide-separation planetary system rather than a free-floating planet. From Bayesian analysis, it is estimated that the planet has a mass of _p = 0.79^(+1.30)_(−0.39) M_J and it is orbiting a low-mass host star with a mass of M_(host) = 0.10+0.17−0.05 M_⊙ located with a projected separation of a_ = 3.4^(+2.1)_(−1.0) au. The planetary system is located in the Galactic bulge with a line-of-sight separation from the source star of D_(LS) = 1.21^(+0.96)_(−0.63) kpc. The event shows that there are a range of deviations in the signatures of host stars for apparently isolated planetary lensing events and that it is possible to identify a host even when a deviation is subtle
A Planetary Microlensing Event with an Unusually Red Source Star: MOA-2011-BLG-291
We present the analysis of planetary microlensing event MOA-2011-BLG-291,
which has a mass ratio of and a source star that
is redder (or brighter) than the bulge main sequence. This event is located at
a low Galactic latitude in the survey area that is currently planned for NASA's
WFIRST exoplanet microlensing survey. This unusual color for a microlensed
source star implies that we cannot assume that the source star is in the
Galactic bulge. The favored interpretation is that the source star is a lower
main sequence star at a distance of kpc in the Galactic disk.
However, the source could also be a turn-off star on the far side of the bulge
or a sub-giant in the far side of the Galactic disk if it experiences
significantly more reddening than the bulge red clump stars. However, these
possibilities have only a small effect on our mass estimates for the host star
and planet. We find host star and planet masses of and from a Bayesian
analysis with a standard Galactic model under the assumption that the planet
hosting probability does not depend on the host mass or distance. However, if
we attempt to measure the host and planet masses with host star brightness
measurements from high angular resolution follow-up imaging, the implied masses
will be sensitive to the host star distance. The WFIRST exoplanet microlensing
survey is expected to use this method to determine the masses for many of the
planetary systems that it discovers, so this issue has important design
implications for the WFIRST exoplanet microlensing survey
- …