26 research outputs found

    Power efficiency management of photovoltaic energy source based on MPPT algorithm

    Get PDF
    In the paper energy supply system based on photovoltaic (PV) arrays was described. Also models of a single PV cell and a voltage boost converter were described. The boost converter was used for holding an appropriate work state of the PV arrays associated with its maximum power point level in various work conditions associated with irradiance level and the arrays temperature. Finally, comparison of two strategies of voltage level control in PV arrays system was put forward. These strategies were used to attain the maximum power point, and to define the work conditions, in which described control algorithms are the most effective

    Experimental stand for investigation of fluid flow in heat exchangers with cross-flow arrangement

    No full text
    The operation analysis of high-performance heat exchanger with tubes elliptical indicated that the heat exchangers can be subject to damage. The reason for this is probably improper distribution of working fluid in tubular space of heat exchanger. Therefore, a part of the tubes may be improperly cooled and subject to compressible stresses. The paper presents an experimental stand allowing to confirm the given assumption. The experimental investigation enables to examine the mass flow rate in heat exchanger tubes. Also, it is possible to assess the impact of the construction of inlet, intermediate and outlet chambers on the flow distribution within the heat exchanger tubes

    The effect of soil and cable backfill thermal conductivity on the temperature distribution in underground cable system

    No full text
    The paper presents a mathematical model of heat transfer in the underground cable system. The computations were performed for flat formation of power cables buried in the ground at a depth of 2 meters. The model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil thermal conductivity on the maximum temperature of the cable conductor. Furthermore, the effect of thermal backfill soil conductivity on the cable conductor temperature was studied. Numerical analyses were performed based on a program written in MATLAB

    The effect of soil and cable backfill thermal conductivity on the temperature distribution in underground cable system

    No full text
    The paper presents a mathematical model of heat transfer in the underground cable system. The computations were performed for flat formation of power cables buried in the ground at a depth of 2 meters. The model allows determining the two-dimensional temperature distribution in the soil, thermal backfill and power cables. The simulations studied the effect of soil thermal conductivity on the maximum temperature of the cable conductor. Furthermore, the effect of thermal backfill soil conductivity on the cable conductor temperature was studied. Numerical analyses were performed based on a program written in MATLAB

    Investigation of flow non-uniformities in the cross-flow heat exchanger with elliptical tubes

    No full text
    In heat exchangers, especially those with the cross-flow arrangement, it is nearly impossible to achieve the uniform distribution of the working fluid in the tubular space with the currently used inlet and outlet chambers (in some constructions as well). The improper inflow conditions to individual tubes, including those with an elliptical cross-section - often used because of their favorable features compared to round tubes, is the cause of improper heat transfer. In this respect, transitional flow is of particular importance. This flow regime is complex and challenging to model. Therefore, it is necessary to perform experimental verification. For this purpose, an appropriate stand was built, allowing to investigate the flow of the working fluid (water) to the elliptical tubes in the cross-current heat exchanger. The paper presents the results of measurements for manifold geometry, which are currently used in practice (for heat exchanger constructions). The analysis of the measurement data confirms the nonuniform flow distribution to individual tubes of the heat exchanger

    Trombe Wall Utilization for Cold and Hot Climate Conditions

    No full text
    In this paper, a novel design for heating and ventilating rooms using solar energy in the winter season and for reducing the cooling load in the summer season is suggested. The system utilizes a water tank, which is part of the building’s wall, for storage and hot water supply. The proposed passive system can be used for heating a room in the day and if the heat is available in excess, at night too. The excess heat can also be utilized to heat water for domestic applications. In the summer season, the excess heat can passively ventilate a room and be extracted out of the building. In addition, as mentioned earlier, the heated water by solar energy can be used for domestic purposes such as washing and taking showers. Hence, it helps in reducing the cooling load in the summer season. This article introduces an analysis of the feasibility of the suggested system. The proposed system has many advantages: The modified Tromble wall system is more thermally efficient, is lighter, and has a fast response for charging and discharging processes as compared to the conventional Trombe walls. The mathematical model of the modified Trombe wall was developed, and the effects of various parameters influencing the heat transfer processes were studied

    Buoyancy-induced convection of water-based nanofluids from an enclosed heated cylinder

    No full text
    Laminar natural convection of nanofluids in a square cooled cavity enclosing a heated horizontal cylinder is studied numerically. This paper aims to investigate in what measure the nanoparticle size and average volume fraction, the cavity width, the cylinder diameter and position, the average temperature of the nanofluid and the temperature difference imposed between the cylinder and the cavity walls, affects the basic heat and fluid flow features, as well as the thermal performance of the nanofluid relative to that of the base liquid

    The Wind Test on Heat Loss from Three Coil Cavity Receiver for a Parabolic Dish Collector

    No full text
    The heat loss from cavity receiver in parabolic dish system determines the efficiency and cost effectiveness of the system. A modified three coil solar cavity receiver of inner wall area approximately three times of single coil receiver, is experimentally investigated to study the effect of fluid inlet temperature (Tfi=50°C to 75 °C) and cavity inclination angle (θ = 0° to 90°) on the heat loss from receiver under wind condition for head on wind and side on wind velocity at 3 m/s. Overall it was found that the natural and forced convection total heat loss increases with increase in mean fluid temperature. The combined heat loss decreases sharply with the increase in cavity inclination and observed to be maximum for horizontal position of receiver and minimum with the receiver facing vertically downward for all investigations. The maximum heat lossin wind test (V=3m/s) is 1045 W at θ=0° cavity inclination at mean fluid temperature 68 °C and minimum at 173 W θ=90° at 53°C. Total heat loss from the receiver under wind condition (V=3m/s) is up to 25% higher(1.25 times at 0° inclination) than without wind at mean fluid temperature ~70°C and minimum 19.64 % (1.2 times at 90° inclination) in mean temperature ~50 °C . In horizontal position of the receiver (θ=0°), the totalheat loss by head on wind is about 1.23 times (18% higher ) as compared to side on wind (at fluid mean temperature ~ 70°C). For receiver facing downward (θ=90°), for head-on wind, total heat loss is approximately the same as that for side-on wind
    corecore