3 research outputs found

    Extreme Poisson’s Ratios of Honeycomb, Re-Entrant, and Zig-Zag Crystals of Binary Hard Discs

    No full text
    Two-dimensional (2D) crystalline structures based on a honeycomb geometry are analyzed by computer simulations using the Monte Carlo method in the isobaric-isothermal ensemble. The considered crystals are formed by hard discs (HD) of two different diameters which are very close to each other. In contrast to equidiameter HD, which crystallize into a homogeneous solid which is elastically isotropic due to its six-fold symmetry axis, the systems studied in this work contain artificial patterns and can be either isotropic or anisotropic. It turns out that the symmetry of the patterns obtained by the appropriate arrangement of two types of discs strongly influences their elastic properties. The Poisson’s ratio (PR) of each of the considered structures was studied in two aspects: (a) its dependence on the external isotropic pressure and (b) in the function of the direction angle, in which the deformation of the system takes place, since some of the structures are anisotropic. In order to accomplish the latter, the general analytic formula for the orientational dependence of PR in 2D systems was used. The PR analysis at extremely high pressures has shown that for the vast majority of the considered structures it is approximately direction independent (isotropic) and tends to the upper limit for isotropic 2D systems, which is equal to +1. This is in contrast to systems of equidiameter discs for which it tends to 0.13, i.e., a value almost eight times smaller

    High Partial Auxeticity Induced by Nanochannels in [111]-Direction in a Simple Model with Yukawa Interactions

    No full text
    Computer simulations using Monte Carlo method in the isobaric-isothermal ensemble were used to investigate the impact of nanoinclusions in the form of very narrow channels in the [ 111 ] -direction on elastic properties of crystals, whose particles interact via Yukawa potential. The studies were performed for several selected values of Debye screening length ( ( κ σ ) − 1 ). It has been observed that introduction of the nanoinclusions into the system reduces the negative value of Poisson’s ratio towards [ 110 ] [ 1 1 ¯ 0 ] , maintaining practically constant values of Poisson’s ratio in the directions [ 100 ] and [ 111 ] . These studies also show that concentration of particles forming the nanoinclusions in the system has a significant effect on the value of Poisson’s ratio in the [ 110 ] [ 1 1 ¯ 0 ] -direction. A strong (more than fourfold) decrease of Poisson’s ratio in this direction was observed, from − 0.147 ( 3 ) (system without inclusions) to − 0.614 ( 14 ) (system with nanoinclusions) at κ σ = 10 when the inclusion particles constituted about 10 percent of all particles. The research also showed an increase in the degree of auxeticity in the system with increasing concentration of nanoinclusion particles for all the screening lengths considered

    Auxeticity of Yukawa Systems with Nanolayers in the (111) Crystallographic Plane

    No full text
    Elastic properties of model crystalline systems, in which the particles interact via the hard potential (infinite when any particles overlap and zero otherwise) and the hard-core repulsive Yukawa interaction, were determined by Monte Carlo simulations. The influence of structural modifications, in the form of periodic nanolayers being perpendicular to the crystallographic axis [111], on auxetic properties of the crystal was investigated. It has been shown that the hard sphere nanolayers introduced into Yukawa crystals allow one to control the elastic properties of the system. It has been also found that the introduction of the Yukawa monolayers to the hard sphere crystal induces auxeticity in the [ 11 1 ¯ ] [ 112 ] -direction, while maintaining the negative Poisson’s ratio in the [ 110 ] [ 1 1 ¯ 0 ] -direction, thus expanding the partial auxeticity of the system to an additional important crystallographic direction
    corecore