14 research outputs found
Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications
A high activity of a two-dimensional (2D) copper oxide (CuO) electrocatalyst for the oxygen evolution reaction (OER) is presented. The CuO electrode self-assembles on a stainless steel substrate via chemical bath deposition at 80 °C in a mixed solution of CuSO4 and NH4OH, followed by air annealing treatment, and shows a 2D nanosheet bundle-type morphology. The OER performance is studied in a 1 M KOH solution. The OER starts to occur at about 1.48 V versus the RHE (η = 250 mV) with a Tafel slope of 59 mV dec−1 in a 1 M KOH solution. The overpotential (η) of 350 mV at 10 mA cm−2 is among the lowest compared with other copper-based materials. The catalyst can deliver a stable current density of >10 mA cm−2 for more than 10 hours. This superior OER activity is due to its adequately exposed OER-favorable 2D morphology and the optimized electronic properties resulting from the thermal treatment
Nanoporous CuCo2O4 nanosheets as a highly efficient bifunctional electrode for supercapacitors and water oxidation catalysis
Efficient and low‐cost multifunctional electrodes play a key role in improving the performance of energy conversion and storage devices. In this study, ultrathin nanoporous CuCo2O4 nanosheets are synthesized on a nickel foam substrate using electrodeposition followed by air annealing. The CuCo2O4 nanosheet electrode exhibits a high specific capacitance of 1473 F g─1 at 1 A g─1 with a capacity retention of ∼93% after 5000 cycles in 3 M KOH solution. It also works well as an efficient oxygen evolution reaction electrocatalyst, demonstrating an overpotential of 260 mV at 20 mA cm─2 with a Tafel slope of ∼64 mV dec─1. in 1 M KOH solution, which is the lowest reported among other copper-cobalt based transition metal oxide catalysts. The catalyst is very stable at >20 mA cm─2 for more than 25 h. The superior electrochemical performance of the CuCo2O4 nanosheet electrode is due to the synergetic effect of the direct growth of 2D nanosheet structure and a large electrochemically active surface area associated with nanopores on the CuCo2O4 nanosheet surface
Nanoflake NiMoO4 based smart supercapacitor for intelligent power balance monitoring.
A supercapacitor is well recognized as one of emerging energy sources for powering electronic devices in our daily life. Although various kind of supercapacitors have been designed and demonstrated, their market aspect could become advanced if the utilisation of other physicochemical properties (e.g. optical) is incorporated in the electrode. Herein, we present an electrochromic supercapacitor (smart supercapacitor) based on a nanoflake NiMoO4 thin film which is fabricated using a facile and well-controlled successive ionic layer adsorption and reaction (SILAR) technique. The polycrystalline nanoflake NiMoO4 electrode exhibits a large electrochemically active surface area of ~ 96.3 cm2. Its nanoporous architecture provides an easy pathway for the intercalation and de-intercalation of ions. The nanoflake NiMoO4 electrode is dark-brown in the charged state and becomes transparent in the discharged state with a high optical modulation of 57%. The electrode shows a high specific capacity of 1853 Fg–1 at a current rate of 1 Ag–1 with a good coloration efficiency of 31.44 cm2/C. Dynamic visual information is obtained when the electrode is charged at different potentials, reflecting the level of energy storage in the device. The device retains 65% capacity after 2500 charge-discharge cycles compared with its initial capacity. The excellent performance of the nanoflake NiMoO4 based smart supercapacitor is associated with the synergetic effect of nanoporous morphology with a large electrochemically active surface area and desired chemical composition for redox reaction
Influence of operating temperature on Li2ZnTi3O8 anode performance and high-rate charging activity of Li-ion battery
The temperature-dependent performance of a Li2ZnTi3O8 (LZTO) anode and the ultrafast-charging activity of a Li-ion battery were investigated. The LZTO anode operates at different temperatures between − 5 and 55 °C and in this work its sustainability is discussed in terms of storage performance. It delivered a discharge capacity of 181.3 mA h g−1 at 25 °C, which increased to 227.3 mA h g−1 at 40 °C and 131.2 mA h g−1 at − 5 °C. The variation in the discharge capacity with temperature is associated with the reaction kinetics and the change in internal resistance. It showed a capacity retention of 64% and a coulombic efficiency of 98% over 500 cycles. Exhibiting a discharge capacity of 107 mA h g−1, the LZTO anode was sustainable over 100 charge-discharge cycles at an ultra-high charging rate of 10 Ag−1. The reaction kinetics estimated from a cyclic voltammetry analysis at high scan rates revealed a capacitive-type storage mechanism
Self-assembled nanostructured CuCo2 O4 for electrochemical energy storage and the oxygen evolution reaction via morphology engineering
CuCo2O4 films with different morphologies of either mesoporous nanosheets, cubic, compact‐granular, or agglomerated embossing structures are fabricated via a hydrothermal growth technique using various solvents, and their bifunctional activities, electrochemical energy storage and oxygen evolution reaction (OER) for water splitting catalysis in strong alkaline KOH media, are investigated. It is observed that the solvents play an important role in setting the surface morphology and size of the crystallites by controlling nucleation and growth rate. An optimized mesoporous CuCo2O4 nanosheet electrode shows a high specific capacitance of 1658 F g−1 at 1 A g−1 with excellent restoring capability of ≈99% at 2 A g−1 and superior energy density of 132.64 Wh kg−1 at a power density of 0.72 kW kg−1. The CuCo2O4 electrode also exhibits excellent endurance performance with capacity retention of 90% and coulombic efficiency of ≈99% after 5000 charge/discharge cycles. The best OER activity is obtained from the CuCo2O4 nanosheet sample with the lowest overpotential of ≈290 mV at 20 mA cm−2 and a Tafel slope of 117 mV dec−1. The superior bifunctional electrochemical activity of the mesoporous CuCo2O4 nanosheet is a result of electrochemically favorable 2D morphology, which leads to the formation of a very large electrochemically active surface area
Dataset on electro-optically tunable smart-supercapacitors based on oxygen-excess nanograin tungsten oxide thin film
The dataset presented here is related to the research article entitled ???Highly Efficient Electro-optically Tunable Smart-supercapacitors Using an Oxygen-excess Nanograin Tungsten Oxide Thin Film??? (Akbar et al., 2017) [9] where we have presented a nanograin WO3 film as a bifunctional electrode for smart supercapacitor devices. In this article we provide additional information concerning nanograin tungsten oxide thin films such as atomic force microscopy, Raman spectroscopy, and X-ray diffraction spectroscopy. Moreover, their electrochemical properties such as cyclic voltammetry, electrochemical supercapacitor properties, and electrochromic properties including coloration efficiency, optical modulation and electrochemical impedance spectroscopy are presented
Two-dimensional layered hydroxide nanoporous nanohybrids pillared with zero-dimensional polyoxovanadate nanoclusters for enhanced water oxidation catalysis
The oxygen‐evolution reaction (OER) is critical in electrochemical water splitting and requires an efficient, sustainable, and cheap catalyst for successful practical applications. A common development strategy for OER catalysts is to search for facile routes for the synthesis of new catalytic materials with optimized chemical compositions and structures. Here, nickel hydroxide Ni(OH)2 2D nanosheets pillared with 0D polyoxovanadate (POV) nanoclusters as an OER catalyst that can operate in alkaline media are reported. The intercalation of POV nanoclusters into Ni(OH)2 induces the formation of a nanoporous layer‐by‐layer stacking architecture of 2D Ni(OH)2 nanosheets and 0D POV with a tunable chemical composition. The nanohybrid catalysts remarkably enhance the OER activity of pristine Ni(OH)2. The present findings demonstrate that the intercalation of 0D POV nanoclusters into Ni(OH)2 is effective for improving water oxidation catalysis and represents a potential method to synthesize novel, porous hydroxide‐based nanohybrid materials with superior electrochemical activities
Fabrication of Cu<sub>2</sub>ZnSnS<sub>4</sub> thin film solar cell using single step electrodeposition method
Cu2ZnSnS4 (CZTS) thin films were deposited onto Mo-coated and tin-doped indium oxide (ITO) coated glass substrates by using single step electrodeposition technique followed by annealing in N2 + H2S atmosphere. Subsequently, they were applied to the fabrication of thin film solar cells. Upon annealing, the amorphous nature of as-deposited precursor film changes into polycrystalline kesterite crystal structure with uniform and densely packed surface morphology. Energy dispersive X-ray spectroscopy (EDS) study reveals that the deposited thin films are nearly stoichiometric. Optical absorption study shows the band gap energy of as-deposited CZTS thin films is 2.7 eV whereas, after annealing, it is found to be 1.53 eV. The solar cell fabricated with CZTS absorber layer, showed the best conversion efficiency (η) 1.21% for 0.44 cm2 with open-circuit voltage (V
oc) = 315 mV, short-circuit current density (J
sc) = 12.27 mA/cm2 and fill factor (FF) = 0.31.
</jats:p
Nanograin tungsten oxide with excess oxygen as a highly reversible anode material for high-performance Li-ion batteries
Nanogranular tungsten oxide (WO3) with excess oxygen is synthesized and its battery performance is evaluated as an anode material for the Li-ion battery (LIB). The formation of a monoclinic WO3 phase is confirmed using X-ray diffraction (XRD) and micro (mu)-Raman spectroscopy analyses. The Rutherford back scattering results confirm the existence of excess oxygen in the film. The charge discharge processes are associated with the conversion of the WO3 from the oxide state to the metallic state, and vice versa, and it shows a maximum specific capacity of 778.8 mAh g(-1) at a current density of 0.1 Ag-1 in the first discharge. Even at a very high current density of 1 Ag-1, the sample retains the capacity of 228.6 mAh g(-1). It shows excellent rate capability and a long-term cycling stability over 500 charge-discharge cycles, with capacity retention of 217%. The observed high discharge capacity and superior long-term cyclability of the nanograin WO3 anode are attributable to the synergetic effect of the excess-oxygen induced increased donor density and enhanced electrical conductivity
Ultrathin Ni-Mo oxide nanoflakes for high-performance supercapacitor electrodes
Supercapacitors based on nanomaterial electrodes exhibit great potential as power sources for advanced electronic devices. From a practical viewpoint, it is desirable to fabricate highly active and sustainable nanomaterial electrodes consisting of non-precious elements using a simple technique in a controllable way. In this work, we report the synthesis of a self-assembled ultra-thin porous nanoflake Ni-Mo oxide (NMO) film using the successive ionic layer adsorption and reaction (SILAR) technique. The nanoflake NMO thin film electrode with a large electrochemically active surface area of similar to 108 cm(-2) exhibits a high specific capacitance of 1180 Fg(-1) at a current density of 1 Ag-1 and excellent rate capability, with a negligible capacity loss of 0.075% per cycle. Even at a high current rate of 10 A g(-1) it retains a capacity of 600 Fg(-1). The highest energy and power densities obtained are 119 Whkg(-1) and 15.7 kWkg(-1), respectively. Electrochemical impedance spectroscopy analyses reveal that the electrode has considerably low charge transfer resistance. The observed excellent electrochemical energy storage performance of the nanoflake NMO electrode with a nanoporous surface is due to the synergetic effects of the large electrochemically active surface area, enhanced ion diffusion, and improved electrical conductivity