38 research outputs found

    Converting Life into Numbers

    Get PDF
    Biological data exists in several layers from genome sequence to networks and beyond. Information that comes from environment passes through layers of viscosity within organisms and is transformed into an output released back into the environment. Given enormous data generation, biology is increasingly becoming a computational problem. Here in this article, various computational needs are abstracted with a view to offer the future requirement of the community

    Asynchronous adaptive time step in quantitative cellular automata modeling

    Get PDF
    BACKGROUND: The behaviors of cells in metazoans are context dependent, thus large-scale multi-cellular modeling is often necessary, for which cellular automata are natural candidates. Two related issues are involved in cellular automata based multi-cellular modeling: how to introduce differential equation based quantitative computing to precisely describe cellular activity, and upon it, how to solve the heavy time consumption issue in simulation. RESULTS: Based on a modified, language based cellular automata system we extended that allows ordinary differential equations in models, we introduce a method implementing asynchronous adaptive time step in simulation that can considerably improve efficiency yet without a significant sacrifice of accuracy. An average speedup rate of 4–5 is achieved in the given example. CONCLUSIONS: Strategies for reducing time consumption in simulation are indispensable for large-scale, quantitative multi-cellular models, because even a small 100 × 100 × 100 tissue slab contains one million cells. Distributed and adaptive time step is a practical solution in cellular automata environment

    Metabolic pathways variability and sequence/networks comparisons

    Get PDF
    BACKGROUND: In this work a simple method for the computation of relative similarities between homologous metabolic network modules is presented. The method is similar to classical sequence alignment and allows for the generation of phenotypic trees amenable to be compared with correspondent sequence based trees. The procedure can be applied to both single metabolic modules and whole metabolic network data without the need of any specific assumption. RESULTS: We demonstrate both the ability of the proposed method to build reliable biological classification of a set of microrganisms and the strong correlation between the metabolic network wiringand involved enzymes sequence space. CONCLUSION: The method represents a valuable tool for the investigation of genotype/phenotype correlationsallowing for a direct comparison of different species as for their metabolic machinery. In addition the detection of enzymes whose sequence space is maximally correlated with the metabolicnetwork space gives an indication of the most crucial (on an evolutionary viewpoint) steps of the metabolic process

    Synthesizing non-natural parts from natural genomic template

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The current knowledge of genes and proteins comes from 'naturally designed' coding and non-coding regions. It would be interesting to move beyond natural boundaries and make user-defined parts. To explore this possibility we made six non-natural proteins in <it>E. coli</it>. We also studied their potential tertiary structure and phenotypic outcomes.</p> <p>Results</p> <p>The chosen intergenic sequences were amplified and expressed using pBAD 202/D-TOPO vector. All six proteins showed significantly low similarity to the known proteins in the NCBI protein database. The protein expression was confirmed through Western blot. The endogenous expression of one of the proteins resulted in the cell growth inhibition. The growth inhibition was completely rescued by culturing cells in the inducer-free medium. Computational structure prediction suggests globular tertiary structure for two of the six non-natural proteins synthesized.</p> <p>Conclusion</p> <p>To our best knowledge, this is the first study that demonstrates artificial synthesis of non-natural proteins from existing genomic template, their potential tertiary structure and phenotypic outcome. The work presented in this paper opens up a new avenue of investigating fundamental biology. Our approach can also be used to synthesize large numbers of non-natural RNA and protein parts for useful applications.</p

    Laws of biology: why so few?

    Get PDF
    Finding fundamental organizing principles is the current intellectual front end of systems biology. From a hydrogen atom to the whole cell level, organisms manage massively parallel and massively interactive processes over several orders of magnitude of size. To manage this scale of informational complexity it is natural to expect organizing principles that determine higher order behavior. Currently, there are only hints of such organizing principles but no absolute evidences. Here, we present an approach as old as Mendel that could help uncover fundamental organizing principles in biology. Our approach essentially consists of identifying constants at various levels and weaving them into a hierarchical chassis. As we identify and organize constants, from pair-wise interactions to networks, our understanding of the fundamental principles in biology will improve, leading to a theory in biology

    The next step in biology: A periodic table?

    No full text

    Is primary obstructive megaureter a genetic disease?

    No full text
    corecore