139 research outputs found
Quantifying the extent of plant functional specialization using Grime's CSR strategies
Specialization refers to a species adaptation to a restricted range of environmental conditions. While generalist species are able to exploit a wide variety of resources in a broad range of habitats, specialist species tend to have narrower niche breadths. From an evolutionary perspective, specialization is the result of a functional syndrome in which a suite of traits covary to allow the effective exploitation of specific resources. Accordingly, the measurement of specialization should be based on a multi-trait approach. In plant ecology, a well-known classification of the adaptive strategies of plants is Grime's competitor, stress tolerator, ruderal (CSR) theory in which the three principal strategies represent relatively easily measurable trait combinations from the global spectrum of plant form and function arising under conditions of competition, abiotic restriction to growth or periodic disturbance, respectively. In this paper, we thus introduce a method to summarize the functional specialization of plant species and communities by applying inequality measures to Grime's CSR strategies. The general idea is that a plant species that can be exclusively assigned to one CSR strategy can be considered a specialist (as it adopts only one adaptive strategy to access resources), while species that share functional characteristics of multiple CSR strategies can be considered more generalist. The behavior of the proposed measures is shown with one case study on the functional changes of six Alpine vegetation types ordered along a gradient, from pioneer to more stable communities
Quantifying the interdisciplinarity of scientific journals and fields
There is an overall perception of increased interdisciplinarity in science,
but this is difficult to confirm quantitatively owing to the lack of adequate
methods to evaluate subjective phenomena. This is no different from the
difficulties in establishing quantitative relationships in human and social
sciences. In this paper we quantified the interdisciplinarity of scientific
journals and science fields by using an entropy measurement based on the
diversity of the subject categories of journals citing a specific journal. The
methodology consisted in building citation networks using the Journal Citation
Reports database, in which the nodes were journals and edges were established
based on citations among journals. The overall network for the 11-year period
(1999-2009) studied was small-world and scale free with regard to the
in-strength. Upon visualizing the network topology an overall structure of the
various science fields could be inferred, especially their interconnections. We
confirmed quantitatively that science fields are becoming increasingly
interdisciplinary, with the degree of interdisplinarity (i.e. entropy)
correlating strongly with the in-strength of journals and with the impact
factor.Comment: 23 pages, 6 figure
Variation within and between Closely Related Species Uncovers High Intra-Specific Variability in Dispersal
Mounting evidence shows that contrasting selection pressures generate variability in dispersal patterns among individuals or populations of the same species, with potential impacts on both species dynamics and evolution. However, this variability is hardly considered in empirical works, where a single dispersal function is considered to adequately reflect the species-specific dispersal ability, suggesting thereby that within-species variation is negligible as regard to inter-specific differences in dispersal abilities. We propose here an original method to make the comparison of intra- and inter-specific variability in dispersal, by decomposing the diversity of that trait along a phylogeny of closely related species. We used as test group European butterflies that are classic study organisms in spatial ecology. We apply the analysis separately to eight metrics that reflect the dispersal propensity, the dispersal ability or the dispersal efficiency of populations and species. At the inter-specific level, only the dispersal ability showed the signature of a phylogenetic signal while neither the dispersal propensity nor the dispersal efficiency did. At the within-species level, the partitioning of dispersal diversity showed that dispersal was variable or highly variable among populations: intra-specific variability represented from 11% to 133% of inter-specific variability in dispersal metrics. This finding shows that dispersal variation is far from negligible in the wild. Understanding the processes behind this high within-species variation should allow us to properly account for dispersal in demographic models. Accordingly, to encompass the within species variability in life histories the use of more than one value per trait per species should be encouraged in the construction of databases aiming at being sources for modelling purposes
Author correction : a global database for metacommunity ecology, integrating species, traits, environment and space
Correction to: Scientific Data https://doi.org/10.1038/s41597-019-0344-7, published online 08 January 202
Author correction : a global database for metacommunity ecology, integrating species, traits, environment and space
Correction to: Scientific Data https://doi.org/10.1038/s41597-019-0344-7, published online 08 January 202
Substantial Alterations of the Cutaneous Bacterial Biota in Psoriatic Lesions
For psoriasis, an idiopathic inflammatory disorder of the skin, the microbial biota has not been defined using cultivation-independent methods. We used broad-range 16S rDNA PCR for archaea and bacteria to examine the microbiota of normal and psoriatic skin. From 6 patients, 19 cutaneous samples (13 from diseased skin and 6 from normal skin) were obtained. Extracted DNA was subjected to the broad range PCR, and 1,925 cloned products were compared with 2,038 products previously reported from healthy persons. Using 98% sequence identity as a species boundary, 1,841 (95.6%) clones were similar to known bacterial 16S rDNA, representing 6 phyla, 86 genera, or 189 species-level operational taxonomic unit (SLOTU); 84 (4.4%) clones with <98% identity probably represented novel species. The most abundant and diverse phylum populating the psoriatic lesions was Firmicutes (46.2%), significantly (P<0.001) overrepresented, compared to the samples from uninvolved skin of the patients (39.0%) and healthy persons (24.4%). In contrast, Actinobacteria, the most prevalent and diverse phylum in normal skin samples from both healthy persons (47.6%) and the patients (47.8%), was significantly (P<0.01) underrepresented in the psoriatic lesion samples (37.3%). Representation of Propionibacterium species were lower in the psoriatic lesions (2.9±5.5%) than from normal persons (21.1±18.2%; P<0.001), whereas normal skin from the psoriatic patients showed intermediate levels (12.3±21.6%). We conclude that psoriasis is associated with substantial alteration in the composition and representation of the cutaneous bacterial biota
Microbial Dysbiosis in Colorectal Cancer (CRC) Patients
The composition of the human intestinal microbiota is linked to health status. The aim was to analyze the microbiota of normal and colon cancer patients in order to establish cancer-related dysbiosis
Edge-Related Loss of Tree Phylogenetic Diversity in the Severely Fragmented Brazilian Atlantic Forest
Deforestation and forest fragmentation are known major causes of nonrandom extinction, but there is no information about their impact on the phylogenetic diversity of the remaining species assemblages. Using a large vegetation dataset from an old hyper-fragmented landscape in the Brazilian Atlantic rainforest we assess whether the local extirpation of tree species and functional impoverishment of tree assemblages reduce the phylogenetic diversity of the remaining tree assemblages. We detected a significant loss of tree phylogenetic diversity in forest edges, but not in core areas of small (<80 ha) forest fragments. This was attributed to a reduction of 11% in the average phylogenetic distance between any two randomly chosen individuals from forest edges; an increase of 17% in the average phylogenetic distance to closest non-conspecific relative for each individual in forest edges; and to the potential manifestation of late edge effects in the core areas of small forest remnants. We found no evidence supporting fragmentation-induced phylogenetic clustering or evenness. This could be explained by the low phylogenetic conservatism of key life-history traits corresponding to vulnerable species. Edge effects must be reduced to effectively protect tree phylogenetic diversity in the severely fragmented Brazilian Atlantic forest
- …