9,768 research outputs found

    Polarization of Thermal X-rays from Isolated Neutron Stars

    Get PDF
    Since the opacity of a magnetized plasma depends on polarization of radiation, the radiation emergent from atmospheres of neutron stars with strong magnetic fields is expected to be strongly polarized. The degree of linear polarization, typically ~10-30%, depends on photon energy, effective temperature and magnetic field. The spectrum of polarization is more sensitive to the magnetic field than the spectrum of intensity. Both the degree of polarization and the position angle vary with the neutron star rotation period so that the shape of polarization pulse profiles depends on the orientation of the rotational and magnetic axes. Moreover, as the polarization is substantially modified by the general relativistic effects, observations of polarization of X-ray radiation from isolated neutron stars provide a new method for evaluating the mass-to-radius ratio of these objects, which is particularly important for elucidating the properties of the superdense matter in the neutron star interiors.Comment: 7 figures, to be published in Ap

    Mass-to-Radius Ratio for the Millisecond Pulsar J0437-4715

    Get PDF
    Properties of X-ray radiation emitted from the polar caps of a radio pulsar depend not only on the cap temperature, size, and position, but also on the surface chemical composition, magnetic field, and neutron star's mass and radius. Fitting the spectra and the light curves with neutron star atmosphere models enables one to infer these parameters. As an example, we present here results obtained from the analysis of the pulsed X-ray radiation of a nearby millisecond pulsar J0437-4715. In particular, we show that stringent constraints on the mass-to-radius ratio can be obtained if orientations of the magnetic and rotation axes are known, e.g., from the radio polarization data.Comment: 2 figures, aasms4.sty; accepted for publication in ApJLetter

    Hydrodynamic chains and a classification of their Poisson brackets

    Full text link
    Necessary and sufficient conditions for an existence of the Poisson brackets significantly simplify in the Liouville coordinates. The corresponding equations can be integrated. Thus, a description of local Hamiltonian structures is a first step in a description of integrable hydrodynamic chains. The concept of MM Poisson bracket is introduced. Several new Poisson brackets are presented

    X-ray emission from the old pulsar B0950+08

    Full text link
    We present the timing and spectral analyses of theXMM-newton data on the 17-Myr-old, nearby radio pulsar B0950+08. This observation revealed pulsations of the X-ray flux of the pulsar at its radio period. The pulse shape and pulsed fraction are apparently different at lower and higher energies of the observed 0.2-10 keV energy range, which suggests that the radiation cannot be explained by a single emission mechanism. The X-ray spectrum of the pulsar can be fitted with a power-law model with a photon index about 1.75 and an (isotropic) luminosity about 9.8e29 erg/s in the 0.2-10 keV. Better fits are obtained with two-component, power-law plus thermal, models with index of 1.30 and 9.7e29 erg/s for the power-law component that presumably originates from the pulsar's magnetosphere. The thermal component, dominating at E>0.7 keV, can be interpreted as radiation from heated polar caps on the neutron star surface covered with a hydrogen atmosphere. The inferred effective temperature, radius, and bolometric luminosity of the polar caps are about 1 MK, 250 m, and 3e29 erg/s. Optical through X-ray nonthermal spectrum of the pulsar can be described as a single power-law with index 1.3-1.4 for the two-component X-ray fit. The ratio of the nonthermal X-ray (1-10 keV) luminosity to the nonthermal optical (4000-9000 \AA) luminosity is within the range of 1e2-1e3 observed for younger pulsars, which suggests that the magnetospheric X-ray and optical emissions are powered by the same mechanism in all pulsars. An upper limit on the temperature of the bulk of the neutron star surface, inferred from the optical and X-ray data, is about 0.15 MK. We also analyze X-ray observations of several other old pulsars, B2224+65, J2043+2740, B0628-28, B1813-36, B1929+10, and B0823+26.Comment: To be published in ApJ. Nonthermal optical and X-ray luminosities of seven radio pulsars are updated and presented in a new Table. Figure 6 showing the ratios of the luminosities vs. spin-down energy is also update

    Classification of integrable hydrodynamic chains and generating functions of conservation laws

    Full text link
    New approach to classification of integrable hydrodynamic chains is established. Generating functions of conservation laws are classified by the method of hydrodynamic reductions. N parametric family of explicit hydrodynamic reductions allows to reconstruct corresponding hydrodynamic chains. Plenty new hydrodynamic chains are found
    • …
    corecore