108 research outputs found

    Graffiti Networks: A Subversive, Internet-Scale File Sharing Model

    Full text link
    The proliferation of peer-to-peer (P2P) file sharing protocols is due to their efficient and scalable methods for data dissemination to numerous users. But many of these networks have no provisions to provide users with long term access to files after the initial interest has diminished, nor are they able to guarantee protection for users from malicious clients that wish to implicate them in incriminating activities. As such, users may turn to supplementary measures for storing and transferring data in P2P systems. We present a new file sharing paradigm, called a Graffiti Network, which allows peers to harness the potentially unlimited storage of the Internet as a third-party intermediary. Our key contributions in this paper are (1) an overview of a distributed system based on this new threat model and (2) a measurement of its viability through a one-year deployment study using a popular web-publishing platform. The results of this experiment motivate a discussion about the challenges of mitigating this type of file sharing in a hostile network environment and how web site operators can protect their resources

    A parent-centered radial layout algorithm for interactive graph visualization and animation

    Get PDF
    We have developed (1) a graph visualization system that allows users to explore graphs by viewing them as a succession of spanning trees selected interactively, (2) a radial graph layout algorithm, and (3) an animation algorithm that generates meaningful visualizations and smooth transitions between graphs while minimizing edge crossings during transitions and in static layouts. Our system is similar to the radial layout system of Yee et al. (2001), but differs primarily in that each node is positioned on a coordinate system centered on its own parent rather than on a single coordinate system for all nodes. Our system is thus easy to define recursively and lends itself to parallelization. It also guarantees that layouts have many nice properties, such as: it guarantees certain edges never cross during an animation. We compared the layouts and transitions produced by our algorithms to those produced by Yee et al. Results from several experiments indicate that our system produces fewer edge crossings during transitions between graph drawings, and that the transitions more often involve changes in local scaling rather than structure. These findings suggest the system has promise as an interactive graph exploration tool in a variety of settings

    Interactive, tree-based graph visualization

    Get PDF
    We introduce an interactive graph visualization scheme that allows users to explore graphs by viewing them as a sequence of spanning trees, rather than the entire graph all at once. The user determines which spanning trees are displayed by selecting a vertex from the graph to be the root. Our main contributions are a graph drawing algorithm that generates meaningful representations of graphs using extracted spanning trees, and a graph animation algorithm for creating smooth, continuous transitions between graph drawings. We conduct experiments to measure how well our algorithms visualize graphs and compare them to another visualization scheme

    On Predictive Modeling for Optimizing Transaction Execution in Parallel OLTP Systems

    Full text link
    A new emerging class of parallel database management systems (DBMS) is designed to take advantage of the partitionable workloads of on-line transaction processing (OLTP) applications. Transactions in these systems are optimized to execute to completion on a single node in a shared-nothing cluster without needing to coordinate with other nodes or use expensive concurrency control measures. But some OLTP applications cannot be partitioned such that all of their transactions execute within a single-partition in this manner. These distributed transactions access data not stored within their local partitions and subsequently require more heavy-weight concurrency control protocols. Further difficulties arise when the transaction's execution properties, such as the number of partitions it may need to access or whether it will abort, are not known beforehand. The DBMS could mitigate these performance issues if it is provided with additional information about transactions. Thus, in this paper we present a Markov model-based approach for automatically selecting which optimizations a DBMS could use, namely (1) more efficient concurrency control schemes, (2) intelligent scheduling, (3) reduced undo logging, and (4) speculative execution. To evaluate our techniques, we implemented our models and integrated them into a parallel, main-memory OLTP DBMS to show that we can improve the performance of applications with diverse workloads.Comment: VLDB201

    Staring into the abyss: An evaluation of concurrency control with one thousand cores

    Get PDF
    Computer architectures are moving towards an era dominated by many-core machines with dozens or even hundreds of cores on a single chip. This unprecedented level of on-chip parallelism introduces a new dimension to scalability that current database management systems (DBMSs) were not designed for. In particular, as the number of cores increases, the problem of concurrency control becomes extremely challenging. With hundreds of threads running in parallel, the complexity of coordinating competing accesses to data will likely diminish the gains from increased core counts. To better understand just how unprepared current DBMSs are for future CPU architectures, we performed an evaluation of concurrency control for on-line transaction processing (OLTP) workloads on many-core chips. We implemented seven concurrency control algorithms on a main-memory DBMS and using computer simulations scaled our system to 1024 cores. Our analysis shows that all algorithms fail to scale to this magnitude but for different reasons. In each case, we identify fundamental bottlenecks that are independent of the particular database implementation and argue that even state-of-the-art DBMSs suffer from these limitations. We conclude that rather than pursuing incremental solutions, many-core chips may require a completely redesigned DBMS architecture that is built from ground up and is tightly coupled with the hardware.Intel Corporation (Science and Technology Center for Big Data

    An Empirical Evaluation of Columnar Storage Formats

    Full text link
    Columnar storage is one of the core components of a modern data analytics system. Although many database management systems (DBMSs) have proprietary storage formats, most provide extensive support to open-source storage formats such as Parquet and ORC to facilitate cross-platform data sharing. But these formats were developed over a decade ago, in the early 2010s, for the Hadoop ecosystem. Since then, both the hardware and workload landscapes have changed significantly. In this paper, we revisit the most widely adopted open-source columnar storage formats (Parquet and ORC) with a deep dive into their internals. We designed a benchmark to stress-test the formats' performance and space efficiency under different workload configurations. From our comprehensive evaluation of Parquet and ORC, we identify design decisions advantageous with modern hardware and real-world data distributions. These include using dictionary encoding by default, favoring decoding speed over compression ratio for integer encoding algorithms, making block compression optional, and embedding finer-grained auxiliary data structures. Our analysis identifies important considerations that may guide future formats to better fit modern technology trends
    • …
    corecore