11 research outputs found

    Advanced tube-bundle rocket thrust chamber

    Get PDF
    An advanced rocket thrust chamber for future space application is described along with an improved method of fabrication. Potential benefits of the concept are improved cyclic life, reusability, and performance. Performance improvements are anticipated because of the enhanced heat transfer into the coolant which will enable higher chamber pressure in expander cycle engines. Cyclic life, reusability and reliability improvements are anticipated because of the enhanced structural compliance inherent in the construction. The method of construction involves the forming of the combustion chamber with a tube-bundle of high conductivity copper or copper alloy tubes, and the bonding of these tubes by an electroforming operation. Further, the method of fabrication reduces chamber complexity by incorporating manifolds, jackets, and structural stiffeners while having the potential for thrust chamber cost and weight reduction

    Experimental evaluation of heat transfer on a 1030:1 area ratio rocket nozzle

    Get PDF
    A 1030:1 carbon steel, heat-sink nozzle was tested. The test conditions included a nominal chamber pressure of 2413 kN/sq m and a mixture ratio range of 2.78 to 5.49. The propellants were gaseous oxygen and gaseous hydrogen. Outer wall temperature measurements were used to calculate the inner wall temperature and the heat flux and heat rate to the nozzle at specified axial locations. The experimental heat fluxes were compared to those predicted by the Two-Dimensional Kinetics (TDK) computer model analysis program. When laminar boundary layer flow was assumed in the analysis, the predicted values were within 15% of the experimental values for the area ratios of 20 to 975. However, when turbulent boundary layer conditions were assumed, the predicted values were approximately 120% higher than the experimental values. A study was performed to determine if the conditions within the nozzle could sustain a laminar boundary layer. Using the flow properties predicted by TDK, the momentum-thickness Reynolds number was calculated, and the point of transition to turbulent flow was predicted. The predicted transition point was within 0.5 inches of the nozzle throat. Calculations of the acceleration parameter were then made to determine if the flow conditions could produce relaminarization of the boundary layer. It was determined that if the boundary layer flow was inclined to transition to turbulent, the acceleration conditions within the nozzle would tend to suppress turbulence and keep the flow laminar-like

    Hot fire fatigue testing results for the compliant combustion chamber

    Get PDF
    A hydrogen-oxygen subscale rocket combustion chamber was designed incorporating an advanced design concept to reduce strain and increase life. The design permits unrestrained thermal expansion of a circumferential direction and, thereby, provides structural compliance during the thermal cycling of hot-fire testing. The chamber was built and test fired at a chamber pressure of 4137 kN/sq m (600 psia) and a hydrogen-oxygen mixture ratio of 6.0. Compared with a conventional milled-channel configuration, the new structurally compliant chamber had a 134 or 287 percent increase in fatigue life, depending on the life predicted for the conventional configuration

    Comparison of theoretical and experimental thrust performance of a 1030:1 area ratio rocket nozzle at a chamber pressure of 2413 kN/m2 (350 psia)

    Get PDF
    The joint Army. Navy, NASA. Air Force (JANNAF) rocket engine peformnace prediction procedure is based on the use of various reference computer programs. One of the reference programs for nozzle analysis is the Two-Dimensional Kinetics (TDK) Program. The purpose of this report is to calibrate the JANNAF procedure incorporated into the December l984 version of the TDK program for the high-area-ratio rocket engine regime. The calibration was accomplished by modeling the performance of a 1030:1 rocket nozzle tested at NASA Lewis Research Center. A detailed description of the experimental test conditions and TDK input parameters is given. The results show that the computer code predicts delivered vacuum specific impulse to within 0.12 to 1.9 percent of the experimental data. Vacuum thrust coefficient predictions were within + or - 1.3 percent of experimental results. Predictions of wall static pressure were within approximately + or - 5 percent of the measured values. An experimental value for inviscid thrust was obtained for the nozzle extension between area ratios of 427.5 and 1030 by using an integration of the measured wall static pressures. Subtracting the measured thrust gain produced by the nozzle between area ratios of 427.5 and 1030 from the inviscid thrust gain yielded experimental drag decrements of 10.85 and 27.00 N (2.44 and 6.07 lb) for mixture ratios of 3.04 and 4.29, respectively. These values correspond to 0.45 and 1.11 percent of the total vacuum thrust. At a mixture ratio of 4.29, the TDK predicted drag decrement was 16.59 N (3.73 lb), or 0.71 percent of the predicted total vacuum thrust

    New method of making advanced tube-bundle rocket thrust chambers

    Get PDF
    An improved method of fabrication rocket chambers for future space applications is described. Included are fabrication demonstrator and test chambers produced by this method. This concept offers the promise of improved cyclic life, reusability, and performance. The performance is improved because of the enhanced enthalpy extraction. The improved cyclic life, reusability, and reliability is improved because of the structural compliance inherent in the construction. The method of construction involves the forming of the combustion chamber by a tube-bundle of high conductivity copper or copper alloy tubes and the bonding of these tubes by a unique electroforming operation. Furthermore, the method of fabrication reduces chamber complexity by incorporating manifolds, and structural stiffeners while having the potential for thrust chamber cost and weight reduction

    Hot fire test results of subscale tubular combustion chambers

    Get PDF
    Advanced, subscale, tubular combustion chambers were built and test fired with hydrogen-oxygen propellants to assess the increase in fatigue life that can be obtained with this type of construction. Two chambers were tested: one ran for 637 cycles without failing, compared to a predicted life of 200 cycles for a comparable smooth-wall milled-channel liner configuration. The other chamber failed at 256 cycles, compared to a predicted life of 118 cycles for a comparable smooth-wall milled-channel liner configuration. Posttest metallographic analysis determined that the strain-relieving design (structural compliance) of the tubular configuration was the cause of this increase in life

    High-Area-Ratio Rocket Nozzle at High Combustion Chamber Pressure: Experimental and Analytical Validation

    Get PDF
    Experimental data were obtained on an optimally contoured nozzle with an area ratio of 1025:1 and on a truncated version of this nozzle with an area ratio of 440:1. The nozzles were tested with gaseous hydrogen and liquid oxygen propellants at combustion chamber pressures of 1800 to 2400 psia and mixture ratios of 3.89 to 6.15. This report compares the experimental performance, heat transfer, and boundary layer total pressure measurements with theoretical predictions of the current Joint Army, Navy, NASA, Air Force (JANNAF) developed methodology. This methodology makes use of the Two-Dimensional Kinetics (TDK) nozzle performance code. Comparisons of the TDK-predicted performance to experimentally attained thrust performance indicated that both the vacuum thrust coefficient and the vacuum specific impulse values were approximately 2.0-percent higher than the turbulent prediction for the 1025:1 configurations, and approximately 0.25-percent higher than the turbulent prediction for the 440:1 configuration. Nozzle wall temperatures were measured on the outside of a thin-walled heat sink nozzle during the test fittings. Nozzle heat fluxes were calculated front the time histories of these temperatures and compared with predictions made with the TDK code. The heat flux values were overpredicted for all cases. The results range from nearly 100 percent at an area ratio of 50 to only approximately 3 percent at an area ratio of 975. Values of the integral of the heat flux as a function of nozzle surface area were also calculated. Comparisons of the experiment with analyses of the heat flux and the heat rate per axial length also show that the experimental values were lower than the predicted value. Three boundary layer rakes mounted on the nozzle exit were used for boundary layer measurements. This arrangement allowed total pressure measurements to be obtained at 14 different distances from the nozzle wall. A comparison of boundary layer total pressure profiles and analytical predictions show good agreement for the first 0.5 in. from the nozzle wall; but the further into the core flow that measurements were taken, the more that TDK overpredicted the boundary layer thickness

    Experimental performance of a high-area-ratio rocket nozzle at high combustion chamber pressure

    Get PDF
    An experimental investigation was conducted to determine the thrust coefficient of a high-area-ratio rocket nozzle at combustion chamber pressures of 12.4 to 16.5 MPa (1800 to 2400 psia). A nozzle with a modified Rao contour and an expansion area ratio of 1025:1 was tested with hydrogen and oxygen at altitude conditions. The same nozzle, truncated to an area ratio of 440:1, was also tested. Values of thrust coefficient are presented along with characteristic exhaust velocity efficiencies, nozzle wall temperatures, and overall thruster specific impulse

    Advanced tube-bundle rocket thrust chambers

    No full text

    A resonance igniter for hydrogen-oxygen combustors

    No full text
    corecore