1,364 research outputs found
Evaluation of QCD sum rules for light vector mesons at finite density and temperature
QCD sum rules are evaluated at finite nucleon densities and temperatures to
determine the change of mass parameters for the lightest vector mesons ,
and in a strongly interacting medium. For conditions relevant
for the starting experiments at HADES we find that the in-medium mass shifts of
the and mesons are governed, within the Borel QCD sum rule
approach, by the density and temperature dependence of the four-quark
condensate. In particular, the variation of the strength of the density
dependence of the four-quark condensate reflects directly the decreasing mass
of the meson and can lead to a change of the sign of the meson
mass shift as a function of the density. In contrast, the in-medium mass of the
meson is directly related to the chiral strange quark condensate which
seems correspondingly accessible
Probing the strange quark condensate by di-electrons from phi meson decays in heavy-ion collisions at SIS energies
QCD sum rules predict that the change of the strange quark condensate in hadron matter at finite baryon density causes a shift of the peak
position of the di-electron spectra from meson decays. Due to the
expansion of hadron matter in heavy-ion collisions, the peak suffers a
smearing governed by the interval of density in the expanding fireball, which
appears as effective broadening of the di-electron spectrum in the
region. The emerging broadening is sensitive to the in-medium change of . This allows to probe directly in-medium modifications of
via di-electron spectra in heavy-ion collisions at SIS energies with HADES
Jet-induced gauge field instabilities in the quark-gluon plasma: A kinetic theory approach
We discuss the properties of the collective modes of a system composed by a
thermalized quark-gluon plasma traversed by a relativistic jet of partons. The
transport equations obeyed by the components of the plasma and of the jet are
studied in the Vlasov approximation. Assuming that the partons in the jet can
be described with a tsunami-like distribution function we derive the
expressions of the dispersion law of the collective modes. Then the behavior of
the unstable gauge modes of the system is analyzed for various values of the
velocity of the jet, of the momentum of the collective modes and of the angle
between these two quantities. We find that the most unstable modes are those
with momentum orthogonal to the velocity of the jet and that these
instabilities appear when the velocity of the jet is higher than a threshold
value, which depends on the plasma and jet frequencies. The results obtained
within the Vlasov approximation are compared with the corresponding results
obtained using a chromohydrodynamical approach.The effect we discuss here
suggests a possible collective mechanism for the description of the jet
quenching phenomena in heavy ion collisions.Comment: 13 pages, 6 figure
Atomic lines in infrared spectra for ultracool dwarfs
We provide a set of atomic lines which are suitable for the description of
ultracool dwarf spectra from 10000 to 25000 \AA. This atomic linelist was made
using both synthetic spectra calculations and existing atlases of infrared
spectra of Arcturus and Sunspot umbra. We present plots, which show the
comparison of synthetic spectra and observed Arcturus and Sunspot umbral
spectra for all atomic lines likely to be observable in high resolution
infrared spectra.Comment: 21 pages, 2 tables, 129 figures, figures are available only at
http://www.astro.livjm.ac.uk/~hraj/spectralatlas/index.html, accepted to A&
Magnetically ordered state at correlated oxide interfaces: the role of random oxygen defects
Using an effective one-band Hubbard model with disorder, we consider magnetic
states of the correlated oxide interfaces, where effective hole self-doping and
a magnetially ordered state emerge due to electronic and ionic reconstructions.
By employing the coherent potential approximation, we analyze the effect of
random oxygen vacancies on the two-dimensional magnetism. We find that the
random vacancies enhance the ferromagnetically ordered state and stabilize a
robust magnetization above a critical vacancy concentration of about c=0.1. In
the strong-correlated regime, we also obtain a nonmonotonic increase of the
magnetization upon an increase of vacancy concentration and a substantial
increase of the magnetic moments, which can be realized at oxygen reduced
high-Tc cuprate interfaces.Comment: 8 pages, 2 figures, submitted to J Supercond Novel Magnetism (ICSM12
conference contribution
Relation between Cutting Surface Quality and Alloying Element Contents when Using a CO2 Laser
This paper deals with the influence of material content on changes in the quality parameters of the cutting surface when cutting with a laser. The study focuses on experiments to find the effect of material structure and cutting parameters on surface roughness, Vickers microhardness and precision of laser cutting. The experimental results are shown in graphs which illustrate the suitability of materials for achieving required cutting surface quality parameters. These results can be used for optimizing production in practical applications using a laser cutting machine
Electronic charge and orbital reconstruction at cuprate-titanate interfaces
In complex transition metal oxide heterostructures of physically dissimilar
perovskite compounds, interface phenomena can lead to novel physical properties
not observed in either of their constituents. This remarkable feature opens new
prospects for technological applications in oxide electronic devices based on
nm-thin oxide films. Here we report on a significant electronic charge and
orbital reconstruction at interfaces between YBa2Cu3O6 and SrTiO3 studied using
local spin density approximation (LSDA) with intra-atomic Coulomb repulsion
(LSDA+U). We show that the interface polarity results in the metallicity of
cuprate-titanate superlattices with the hole carriers concentrated
predominantly in the CuO2 and BaO layers and in the first interface TiO2 and
SrO planes. We also find that the interface structural relaxation causes a
strong change of orbital occupation of Cu 3d orbitals in the CuO2 layers. The
concomitant change of Cu valency from +2 to +3 is related to the partial
occupation of the Cu orbitals at the interface with SrO planes
terminating SrTiO3. Interface-induced predoping and orbital reconstruction in
CuO2 layers are key mechanisms which control the superconducting properties of
field-effect devices developed on the basis of cuprate-titanate
heterostructures.Comment: 11 pages, 8 figures, to appear in the "Proceedings of Third Joint
HLRB and KONWIHR Result and Reviewing Workshop", Springer 200
- …