25 research outputs found

    Efficient production and enhanced tumor delivery of engineered extracellular vesicles

    Get PDF
    Extracellular vesicles (EV), including exosomes and microvesicles, are nano-sized intercellular communication vehicles that participate in a multitude of physiological processes. Due to their biological properties, they are also promising candidates for the systemic delivery of therapeutic compounds, such as cytokines, chemotherapeutic drugs, siRNAs and viral vectors. However, low EV production yield and rapid clearance of administered EV by liver macrophages limit their potential use as therapeutic vehicles. We have used a hollow-fiber bioreactor for the efficient production of bioactive EV bearing the heterodimeric cytokine complex Interleukin-15:Interleukin-15 receptor alpha. Bioreactor culture yielded ∼40-fold more EV per mL conditioned medium, as compared to conventional cell culture. Biophysical analysis and comparative proteomics suggested a more diverse population of EV in the bioreactor preparations, while serum protein contaminants were detectable only in conventional culture EV preparations. We also identified the Scavenger Receptor Class A family (SR-A) as a novel monocyte/macrophage uptake receptor for EV. In vivo blockade of SR-A with dextran sulfate dramatically decreased EV liver clearance in mice, while enhancing tumor accumulation. These findings facilitate development of EV therapeutic methods. © 201

    Targets for Antiviral Chemotherapy: HIV Regulatory Proteins

    Full text link

    Evaluating the effects of second-dose vaccine-delay policies in European countries: A simulation study based on data from Greece

    Full text link
    The results of a simulation-based evaluation of several policies for vaccine rollout are reported, particularly focusing on the effects of delaying the second dose of two-dose vaccines. In the presence of limited vaccine supply, the specific policy choice is a pressing issue for several countries worldwide, and the adopted course of action will affect the extension or easing of non-pharmaceutical interventions in the next months. We employ a suitably generalised, age-structure, stochastic SEIR (Susceptible ! Exposed ! Infectious ! Removed) epidemic model that can accommodate quantitative descriptions of the major effects resulting from distinct vaccination strategies. The different rates of social contacts among distinct age-groups (as well as some other model parameters) are informed by a recent survey conducted in Greece, but the conclusions are much more widely applicable. The results are summarised and evaluated in terms of the total number of deaths and infections as well as life years lost. The optimal strategy is found to be one based on fully vaccinating the elderly/at risk as quickly as possible, while extending the time-interval between the two vaccine doses to 12 weeks for all individuals below 75 years old, in agreement with epidemic theory which suggests targeting a combination of susceptibility and infectivity. This policy, which is similar to the approaches adopted in the UK and in Canada, is found to be effective in reducing deaths and life years lost in the period while vaccination is still being carried out. This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication

    Temporal dominance of b.1.1.7 over b.1.354 sars-cov-2 variant: A hypothesis based on areas of variant co-circulation

    Full text link
    Some emergent SARS-CoV-2 variants raise concerns due to their altered biological properties. For both B.1.1.7 and B.1351 variants, named as variants of concern (VOC), increased transmissibility was reported, whereas B.1.351 was more resistant to multiple monoclonal antibodies (mAbs), as well as convalescent and vaccination sera. To test this hypothesis, we examined the proportion of VOC over time across different geographic areas where the two VOC, B.1.1.7 and B.1.351, co-circulate. Our comparative analysis was based on the number of SARS-CoV-2 sequences on GISAID database. We report that B.1.1.7 dominates over B.1.351 in geographic areas where both variants co-circulate and the B.1.1.7 was the first variant introduced in the population. The only areas where B.1.351 was detected at higher proportion were South Africa and Mayotte in Africa, where this strain was associated with increased community transmission before the detection of B.1.1.7. The dominance of B.1.1.7 over B.1.351 could be important since B.1.351 was more resistant to certain mAbs, as well as heterologous convalescent and vaccination sera, thus suggesting that it may be transmitted more effectively in people with pre-existing immunity to other VOC. This scenario would lessen the effectiveness of vaccine and urge the need to update them with new strains. © 2021 by the authors. Licensee MDPI, Basel, Switzerland

    The emerging role of convalescent plasma in the treatment of COVID-19

    Full text link
    Various agents are currently under evaluation as potential treatments in the fight against coronavirus disease 2019 (COVID-19). Plasma from patients that have overcome COVID-19 infection, referred to as convalescent plasma, is a treatment option with considerable background in viral diseases such as Spanish influenza, H1N1, Ebola, Severe Acute Respiratory Syndrome (SARS), and Middle East Respiratory Syndrome (MERS). Although convalescent plasma has historically proven beneficial in the treatment of some viral diseases, its use is still explorative in the context of COVID-19. To date, preliminary evidence from case series is favorable as significant clinical, biochemical improvement and hospital discharge have been reported. A detailed overview of randomized as well non-randomized trials of treatment with convalescent plasma, which have been registered worldwide, is provided in this review. Based on these studies, data from thousands of patients is anticipated in the near future. Convalescent plasma seems to be a safe option, but potential risks such as transfusion-related acute lung injury and antibody-dependent enhancement are discussed. Authorities including the Food and Drug Administration (FDA), and scientific associations such as the International Society of Blood Transfusion (ISBT) and the European Blood Alliance (EBA), have provided guidance into the selection criteria for donors and recipients. A debatable, pivotal issue pertains to the optimal timing of convalescent plasma transfusion. This treatment should be administered as early as possible to maximize efficacy, but at the same time be reserved for severe cases. Emerging risk stratification algorithms integrating clinical and biochemical markers to trace the cases at risk of significant deterioration can prove valuable in this direction. © 2020 Wolters Kluwer Health. All rights reserved

    Insights to SARS-CoV-2 life cycle, pathophysiology, and rationalized treatments that target COVID-19 clinical complications

    Full text link
    Background: Gaining further insights into SARS-CoV-2 routes of infection and the underlying pathobiology of COVID-19 will support the design of rational treatments targeting the life cycle of the virus and/or the adverse effects (e.g., multi-organ collapse) that are triggered by COVID-19-mediated adult respiratory distress syndrome (ARDS) and/or other pathologies. Main body: COVID-19 is a two-phase disease being marked by (phase 1) increased virus transmission and infection rates due to the wide expression of the main infection-related ACE2, TMPRSS2 and CTSB/L human genes in tissues of the respiratory and gastrointestinal tract, as well as by (phase 2) host- and probably sex- and/or age-specific uncontrolled inflammatory immune responses which drive hyper-cytokinemia, aggressive inflammation and (due to broad organotropism of SARS-CoV-2) collateral tissue damage and systemic failure likely because of imbalanced ACE/ANGII/AT1R and ACE2/ANG(1–7)/MASR axes signaling. Conclusion: Here we discuss SARS-CoV-2 life cycle and a number of approaches aiming to suppress viral infection rates or propagation; increase virus antigen presentation in order to activate a robust and durable adaptive immune response from the host, and/or mitigate the ARDS-related “cytokine storm” and collateral tissue damage that triggers the severe life-threatening complications of COVID-19. © 2021, The Author(s)

    Persistent HIV-1 infection of natural killer cells in patients receiving highly active antiretroviral therapy

    Full text link
    We have identified a subset of CD56+CD3- human natural killer (NK) cells that express CD4 and the HIV coreceptors CCR5 and CXCR4. These cells can be productively infected in vitro by both CCR5- and CXCR4-using molecular clones of HIV-1 in a CD4-dependent manner. Analysis of HIV-infected persons showed that viral DNA is present in purified NK cells, and virus could be rescued from these cells after in vitro cultivation. Longitudinal analysis of the HIV-1 DNA levels in NK cells from patients after 1-2 years of highly active antiretroviral therapy indicated that NK cells remain persistently infected and account for a substantial amount of the viral DNA in peripheral blood mononuclear cells. These results demonstrate that a subset of non-T cells with NK markers are persistently infected and suggest that HIV infection of NK cells is important for virus persistence. The properties of the virus reservoir in these cells should be considered in attempts to further optimize antiretroviral therapies

    Sequential Analysis of Binding and Neutralizing Antibody in COVID-19 Convalescent Patients at 14 Months After SARS-CoV-2 Infection

    Full text link
    Durability of SARS-CoV-2 Spike antibody responses after infection provides information relevant to understanding protection against COVID-19 in humans. We report the results of a sequential evaluation of anti-SARS-CoV-2 antibodies in convalescent patients with a median follow-up of 14 months (range 12.4-15.4) post first symptom onset. We report persistence of antibodies for all four specificities tested [Spike, Spike Receptor Binding Domain (Spike-RBD), Nucleocapsid, Nucleocapsid RNA Binding Domain (N-RBD)]. Anti-Spike antibodies persist better than anti-Nucleocapsid antibodies. The durability analysis supports a bi-phasic antibody decay with longer half-lives of antibodies after 6 months and antibody persistence for up to 14 months. Patients infected with the Wuhan (WA1) strain maintained strong cross-reactive recognition of Alpha and Delta Spike-RBD but significantly reduced binding to Beta and Mu Spike-RBD. Sixty percent of convalescent patients with detectable WA1-specific NAb also showed strong neutralization of the Delta variant, the prevalent strain of the present pandemic. These data show that convalescent patients maintain functional antibody responses for more than one year after infection, suggesting a strong long-lasting response after symptomatic disease that may offer a prolonged protection against re-infection. One patient from this cohort showed strong increase of both Spike and Nucleocapsid antibodies at 14 months post-infection indicating SARS-CoV-2 re-exposure. These antibodies showed stronger cross-reactivity to a panel of Spike-RBD including Beta, Delta and Mu and neutralization of a panel of Spike variants including Beta and Gamma. This patient provides an example of strong anti-Spike recall immunity able to control infection at an asymptomatic level. Together, the antibodies from SARS-CoV-2 convalescent patients persist over 14 months and continue to maintain cross-reactivity to the current variants of concern and show strong functional properties. Copyright © 2021 Rosati, Terpos, Ntanasis-Stathopoulos, Agarwal, Bear, Burns, Hu, Korompoki, Donohue, Venzon, Dimopoulos, Pavlakis and Felber
    corecore