140 research outputs found

    Development and Validation of a Genotype 3 Recombinant Protein based Immunoassay for Hepatitis E Virus Serology in Swine

    Get PDF
    Hepatitis E virus (HEV) is classified within the family Hepeviridae, genus Hepevirus. HEV genotype 3 (Gt3) infections are endemic in pigs in Western Europe and in North and South America and cause zoonotic infections in humans. Several serological assays to detect HEV antibodies in pigs have been developed, at first mainly based on HEV genotype 1 (Gt1) antigens. To develop a sensitive HEV Gt3 ELISA, a recombinant baculovirus expression product of HEV Gt3 open reading frame-2 was produced and coated onto polystyrene ELISA plates. After incubation of porcine sera, bound HEV antibodies were detected with anti-porcine anti-IgG and anti-IgM conjugates. For primary estimation of sensitivity and specificity of the assay, sets of sera were used from pigs experimentally infected with HEV Gt3. For further validation of the assay and to set the cutoff value, a batch of 1100 pig sera was used. All pig sera were tested using the developed HEV Gt3 assay and two other serologic assays based on HEV Gt1 antigens. Since there is no gold standard available for HEV antibody testing, further validation and a definite setting of the cutoff of the developed HEV Gt3 assay were performed using a statistical approach based on Bayes' theorem. The developed and validated HEV antibody assay showed effective detection of HEV-specific antibodies. This assay can contribute to an improved detection of HEV antibodies and enable more reliable estimates of the prevalence of HEV Gt3 in swine in different regions

    Hepatitis E Virus in Pork Liver Sausage, France

    Get PDF
    We investigated viability of hepatitis E virus (HEV) identified in contaminated pork liver sausages obtained from France. HEV replication was demonstrated in 1 of 4 samples by using a 3-dimensional cell culture system. The risk for human infection with HEV by consumption of these sausages should be considered to be high

    Anti-apoptotic effect of HCV core gene of genotype 3a in Huh-7 cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hepatitis C virus (HCV) Core protein regulates multiple signaling pathways and alters cellular genes expression responsible for HCV induced pathogenesis leading to hepatocellular carcinoma (HCC). Prevalence of HCV genotype 3a associated HCC is higher in Pakistan as compare to the rest of world; however the molecular mechanism behind this is still unclear. This study has been designed to evaluate the effect of HCV core 3a on apoptosis and cell proliferation which are involved in HCC</p> <p>Methodology</p> <p>We examined the in vitro effect of HCV Core protein of genotype 3a and 1a on cellular genes involved in apoptosis by Real time PCR in liver cell line (Huh-7). We analyzed the effect of HCV core of genotype 1a and 3a on cell proliferation by MTT assay and on phosphrylation of Akt by western blotting in Huh-7 cells.</p> <p>Results</p> <p>The HCV 3a Core down regulates the gene expression of Caspases (3, 8, 9 and 10), Cyto C and p53 which are involved in apoptosis. Moreover, HCV 3a Core gene showed stronger effect in regulating protein level of p-Akt as compared to HCV 1a Core accompanied by enhanced cell proliferation in Huh-7 cell line.</p> <p>Conclusion</p> <p>From the current study it has been concluded that reduced expression of cellular genes involved in apoptosis, increased p-Akt (cell survival gene) and enhanced cell proliferation in response to HCV 3a core confirms anti apoptotic effect of HCV 3a Core gene in Huh-7 that may lead to HCC.</p

    Co-Expression of miRNA Targeting the Expression of PERK, but Not PKR, Enhances Cellular Immunity from an HIV-1 Env DNA Vaccine

    Get PDF
    Small non-coding micro-RNAs (miRNA) are important post-transcriptional regulators of mammalian gene expression that can be used to direct the knockdown of expression from targeted genes. We examined whether DNA vaccine vectors co-expressing miRNA with HIV-1 envelope (Env) antigens could influence the magnitude or quality of the immune responses to Env in mice. Human miR-155 and flanking regions from the non-protein encoding gene mirhg155 were introduced into an artificial intron within an expression vector for HIV-1 Env gp140. Using the miR-155-expressing intron as a scaffold, we developed novel vectors for miRNA-mediated targeting of the cellular antiviral proteins PKR and PERK, which significantly down-modulated target gene expression and led to increased Env expression in vitro. Finally, vaccinating BALB/c mice with a DNA vaccine vector delivering miRNA targeting PERK, but not PKR, was able to augment the generation of Env-specific T-cell immunity. This study provides proof-of-concept evidence that miRNA effectors incorporated into vaccine constructs can positively influence vaccine immunogenicity. Further testing of vaccine-encoded miRNA will determine if such strategies can enhance protective efficacy from vaccines against HIV-1 for eventual human use

    Temporal Proteome and Lipidome Profiles Reveal Hepatitis C Virus-Associated Reprogramming of Hepatocellular Metabolism and Bioenergetics

    Get PDF
    Proteomic and lipidomic profiling was performed over a time course of acute hepatitis C virus (HCV) infection in cultured Huh-7.5 cells to gain new insights into the intracellular processes influenced by this virus. Our proteomic data suggest that HCV induces early perturbations in glycolysis, the pentose phosphate pathway, and the citric acid cycle, which favor host biosynthetic activities supporting viral replication and propagation. This is followed by a compensatory shift in metabolism aimed at maintaining energy homeostasis and cell viability during elevated viral replication and increasing cellular stress. Complementary lipidomic analyses identified numerous temporal perturbations in select lipid species (e.g. phospholipids and sphingomyelins) predicted to play important roles in viral replication and downstream assembly and secretion events. The elevation of lipotoxic ceramide species suggests a potential link between HCV-associated biochemical alterations and the direct cytopathic effect observed in this in vitro system. Using innovative computational modeling approaches, we further identified mitochondrial fatty acid oxidation enzymes, which are comparably regulated during in vitro infection and in patients with histological evidence of fibrosis, as possible targets through which HCV regulates temporal alterations in cellular metabolic homeostasis

    HCV+ Hepatocytes Induce Human Regulatory CD4+ T Cells through the Production of TGF-Ξ²

    Get PDF
    Background: Hepatitis C Virus (HCV) is remarkably efficient at establishing persistent infection and is associated with the development of chronic liver disease. Impaired T cell responses facilitate and maintain persistent HCV infection. Importantly, CD4 + regulatory T cells (Tregs) act by dampening antiviral T cell responses in HCV infection. The mechanism for induction and/or expansion of Tregs in HCV is unknown. Methodology/Principal Findings: HCV-expressing hepatocytes were used to determine if hepatocytes are able to induce Tregs. The infected liver environment was modeled by establishing the co-culture of the human hepatoma cell line, Huh7.5, containing the full-length genome of HCV genotype 1a (Huh7.5-FL) with activated CD4 + T cells. The production of IFN-c was diminished following co-culture with Huh7.5-FL as compared to controls. Notably, CD4 + T cells in contact with Huh7.5-FL expressed an increased level of the Treg markers, CD25, Foxp3, CTLA-4 and LAP, and were able to suppress the proliferation of effector T cells. Importantly, HCV + hepatocytes upregulated the production of TGF-b and blockade of TGF-b abrogated Treg phenotype and function. Conclusions/Significance: These results demonstrate that HCV infected hepatocytes are capable of directly inducing Tregs development and may contribute to impaired host T cell responses

    Hepatitis C Virus Antigenic Convergence

    Get PDF
    Vaccine development against hepatitis C virus (HCV) is hindered by poor understanding of factors defining cross-immunoreactivity among heterogeneous epitopes. Using synthetic peptides and mouse immunization as a model, we conducted a quantitative analysis of cross-immunoreactivity among variants of the HCV hypervariable region 1 (HVR1). Analysis of 26,883 immunological reactions among pairs of peptides showed that the distribution of cross-immunoreactivity among HVR1 variants was skewed, with antibodies against a few variants reacting with all tested peptides. The HVR1 cross-immunoreactivity was accurately modeled based on amino acid sequence alone. The tested peptides were mapped in the HVR1 sequence space, which was visualized as a network of 11,319 sequences. The HVR1 variants with a greater network centrality showed a broader cross-immunoreactivity. The entire sequence space is explored by each HCV genotype and subtype. These findings indicate that HVR1 antigenic diversity is extensively convergent and effectively limited, suggesting significant implications for vaccine development
    • …
    corecore