1,678 research outputs found
Enhanced stability of bound pairs at nonzero lattice momenta
A two-body problem on the square lattice is analyzed. The interaction
potential consists of strong on-site repulsion and nearest-neighbor attraction.
Exact pairing conditions are derived for s-, p-, and d-symmetric bound states.
The pairing conditions are strong functions of the total pair momentum K. It is
found that the stability of pairs increases with K. At weak attraction, the
pairs do not form at the -point but stabilize at lattice momenta close
to the Brillouin zone boundary. The phase boundaries in the momentum space,
which separate stable and unstable pairs are calculated. It is found that the
pairs are formed easier along the direction than along the
direction. This might lead to the appearance of ``hot pairing
spots" on the Kx and Ky axes.Comment: 7 RevTEX pages, 5 figure
Zwitterionic iodonium species afford halogen bond-based porous organic frameworks
Porous architectures characterized by parallel channels arranged in honeycomb or rectangular patterns are identified in two polymorphic crystals of a zwitterionic 4-(aryliodonio)-benzenesulfonate. The channels are filled with disordered water molecules which can be reversibly removed on heating. Consistent with the remarkable strength and directionality of the halogen bonds (XBs) driving the crystal packing formation, the porous structure is stable and fully preserved on almost quantitative removal and readsorption of water. The porous systems described here are the first reported cases of one-component 3D organic frameworks whose assembly is driven by XB only (XOFs). These systems are a proof of concept for the ability of zwitterionic aryliodonium tectons in affording robust one-component 3D XOFs. The high directionality and strength of the XBs formed by these zwitterions and the geometrical constraints resulting from the tendency of their hypervalent iodine atoms to act as bidentate XB donors might be key factors in determining this ability
Air temperature variations and gradients along the coast and fjords of western Spitsbergen
Daily temperature measurements from six meteorological stations along the coast and fjords of western Spitsbergen have been digitized and quality controlled in a Norwegian, Russian and Polish collaboration. Complete daily data series have been reconstructed back to 1948 for all of the stations. One of the station’s monthly temperature series has previously been extended back to 1898 and is included in this study. The long-term series show large temperature variability on western Spitsbergen with colder periods in the 1910s and 1960s and warmer periods in the 1930s, 1950s and in the 21st century. The most recent years are the warmest ones in the instrumental records. There is a
positive and statistically significant trend in the annual times series for all of the stations; however, the strongest warming is seen in winter and spring. For the period 1979-2015, the linear trends range from 1.0 to 1.38°C/decade for the annual series and from 2.0 to 2.38°C/decade in winter. Threshold statistics demonstrate a decrease in the number of cold days per year and an increase in the number of warm days. A decreasing inter-annual variability is observed. In winter, spring and autumn, the stations in the northernmost areas of west Spitsbergen and in the innermost parts of Isfjorden are the coldest ones. In summer, however, the southernmost station is the coldest one
Two groups of phenylalanine biosynthetic operon leader peptides genes: a high level of apparently incidental frameshifting in decoding Escherichia coli pheL
The bacterial pheL gene encodes the leader peptide for the phenylalanine biosynthetic operon. Translation of pheL mRNA controls transcription attenuation and, consequently, expression of the downstream pheA gene. Fifty-three unique pheL genes have been identified in sequenced genomes of the gamma subdivision. There are two groups of pheL genes, both of which are short and contain a run(s) of phenylalanine codons at an internal position. One group is somewhat diverse and features different termination and 5′-flanking codons. The other group, mostly restricted to Enterobacteria and including Escherichia coli pheL, has a conserved nucleotide sequence that ends with UUC_CCC_UGA. When these three codons in E. coli pheL mRNA are in the ribosomal E-, P- and A-sites, there is an unusually high level, 15%, of +1 ribosomal frameshifting due to features of the nascent peptide sequence that include the penultimate phenylalanine. This level increases to 60% with a natural, heterologous, nascent peptide stimulator. Nevertheless, studies with different tRNAPro mutants in Salmonella enterica suggest that frameshifting at the end of pheL does not influence expression of the downstream pheA. This finding of incidental, rather than utilized, frameshifting is cautionary for other studies of programmed frameshifting
A Transcriptional “Scream” Early Response of E. coli Prey to Predatory Invasion by Bdellovibrio
We have transcriptionally profiled the genes differentially expressed in E. coli prey cells when predatorily attacked by Bdellovibrio bacteriovorus just prior to prey cell killing. This is a brief, approximately 20–25 min period when the prey cell is still alive but contains a Bdellovibrio cell in its periplasm or attached to and penetrating its outer membrane. Total RNA was harvested and labelled 15 min after initiating a semi-synchronous infection with an excess of Bdellovibrio preying upon E. coli and hybridised to a macroarray spotted with all predicted ORFs of E. coli. SAM analysis and t-tests were performed on the resulting data and 126 E. coli genes were found to be significantly differentially regulated by the prey upon attack by Bdellovibrio. The results were confirmed by QRT-PCR. Amongst the prey genes upregulated were a variety of general stress response genes, potentially “selfish” genes within or near prophages and transposable elements, and genes responding to damage in the periplasm and osmotic stress. Essentially, the presence of the invading Bdellovibrio and the resulting damage to the prey cell elicited a small “transcriptional scream”, but seemingly no specific defensive mechanism with which to counter the Bdellovibrio attack. This supports other studies which do not find Bdellovibrio resistance responses in prey, and bodes well for its use as a “living antibiotic”
eIF5A Promotes Translation Elongation, Polysome Disassembly and Stress Granule Assembly
Stress granules (SGs) are cytoplasmic foci at which untranslated mRNAs accumulate in cells exposed to environmental stress. We have identified ornithine decarboxylase (ODC), an enzyme required for polyamine synthesis, and eIF5A, a polyamine (hypusine)-modified translation factor, as proteins required for arsenite-induced SG assembly. Knockdown of deoxyhypusine synthase (DHS) or treatment with a deoxyhypusine synthase inhibitor (GC7) prevents hypusine modification of eIF5A as well as arsenite-induced polysome disassembly and stress granule assembly. Time-course analysis reveals that this is due to a slowing of stress-induced ribosome run-off in cells lacking hypusine-eIF5A. Whereas eIF5A only marginally affects protein synthesis under normal conditions, it is required for the rapid onset of stress-induced translational repression. Our results reveal that hypusine-eIF5A-facilitated translation elongation promotes arsenite-induced polysome disassembly and stress granule assembly in cells subjected to adverse environmental conditions
High-resolution label-free 3D mapping of extracellular pH of single living cells
Abstract: Dynamic mapping of extracellular pH (pHe) at the single-cell level is critical for understanding the role of H+ in cellular and subcellular processes, with particular importance in cancer. While several pHe sensing techniques have been developed, accessing this information at the single-cell level requires improvement in sensitivity, spatial and temporal resolution. We report on a zwitterionic label-free pH nanoprobe that addresses these long-standing challenges. The probe has a sensitivity > 0.01 units, 2 ms response time, and 50 nm spatial resolution. The platform was integrated into a double-barrel nanoprobe combining pH sensing with feedback-controlled distance dependance via Scanning Ion Conductance Microscopy. This allows for the simultaneous 3D topographical imaging and pHe monitoring of living cancer cells. These classes of nanoprobes were used for real-time high spatiotemporal resolution pHe mapping at the subcellular level and revealed tumour heterogeneity of the peri-cellular environments of melanoma and breast cancer cells
Exclusive electroproduction of J/psi mesons at HERA
The exclusive electroproduction of J/psi mesons, ep->epJ/psi, has been
studied with the ZEUS detector at HERA for virtualities of the exchanged photon
in the ranges 0.15<Q^2<0.8 GeV^2 and 2<Q^2<100 GeV^2 using integrated
luminosities of 69 pb^-1 and 83 pb^-1, respectively.The photon-proton
centre-of-mass energy was in the range 30<W<220 GeV and the squared
four-momentum transfer at the proton vertex |t|<1.The cross sections and decay
angular distributions are presented as functions of Q^2, W and t. The effective
parameters of the Pomeron trajectory are in agreement with those found in J/psi
photoproduction. The spin-density matrix elements, calculated from the decay
angular distributions, are consistent with the hypothesis of s-channel helicity
conservation. The ratio of the longitudinal to transverse cross sections,
sigma_L/sigma_T, grows with Q^2, whilst no dependence on W or t is observed.
The results are in agreement with perturbative QCD calculations and exhibit a
strong sensitivity to the gluon distribution in the proton.Comment: 33 pages, 10 figures. Submitted to Nuclear Physics
- …