26 research outputs found

    cGMP-dependent protein kinase regulates Rap1 signaling in platelets : poster presentation

    Get PDF
    cGMP- and cAMP-dependent protein kinases (cGK and cAK) mediate the inhibitory effects of endothelium-derived messenger molecules nitric oxide and prostacyclin on platelets. To understand the mechanisms involved in platelet inhibition we searched for new substrates of cGK and cAK. We identified Rap1GAP2, the only GTPase-activating protein of Rap1 in platelets. Rap1 is a guanine-nucleotide binding protein that controls integrin activity, platelet adhesion and aggregation. Rap1GAP2 is required to turn over Rap1-GTP to Rap1-GDP resulting in the inactivation of integrins and reduced cellular adhesion. Using phospho-specific antibodies we demonstrate phosphorylation of endogenous Rap1GAP2 on serine 7 by cGK and cAK in intact platelets. Yeast-two-hybrid screening revealed an interaction of the phosphoserine/-threonine binding adapter protein 14-3-3 with Rap1GAP2, and we mapped the 14-3-3 binding site to the N-terminus of Rap1GAP2 close to the cGK/cAK phosphorylation site. We could show that 14-3-3 binding to Rap1GAP2 requires phosphorylation of serine 9. Platelet activation by ADP and thrombin treatment induces Rap1GAP2 serine 9 phosphorylation and enhances the attachment of 14-3-3 to Rap1GAP2. In contrast, phosphorylation of serine 7 by cGK/cAK leads to the detachment of 14-3-3. Furthermore, Rap1GAP2 serine 7 phosphorylation correlates with the inhibition of Rap1-GTP formation by cGMP and cAMP in platelets. Cell adhesion experiments provide additional evidence that Rap1GAP2 is activated by the detachment of 14-3-3. Point mutants of Rap1GAP2 deficient in 14-3-3 binding inhibit Rap1-mediated cell adhesion significantly stronger than a Rap1GAP2 mutant that binds 14-3-3 constitutively. Our findings define a novel regulatory mechanism that might contribute to both platelet activation and endothelial inhibition of platelet adhesion and aggregation

    CD28 co-signaling in the adaptive immune response

    No full text
    T-cell proliferation and function depends on signals from the antigen-receptor complex (TCR/CD3) and by various co-receptors such as CD28 and CTLA-4. The balance of positive and negative signals determines the outcome of the T-cell response to foreign and self-antigen. CD28 is a prominent co-receptor in naïve and memory T-cell responses. Its blockade has been exploited clinically to dampen T-cell responses to self-antigen. Current evidence shows that CD28 both potentiates TCR signaling and engages a unique array of mediators (PI3K, Grb2, FLNa) in the regulation of aspects of T-cell signaling including the transcription factor NFkB. In this mini-review, we provide an up-to-date overview of our understanding of the signaling mechanisms that underlie CD28 function and its potential application to the modulation of reactivity to autoimmunity

    The taxonomy of the Caloplaca citrina group (Teloschistaceae) in the Black Sea region; with contributions to the cryptic species concept in lichenology

    No full text
    A new taxonomy of the Caloplaca citrina group in the Black Sea region is presented. It is based on the nrDNA ITS molecular data, chemistry (anthraquinone contents) and 20 morphological characters. Six species previously known in the region are accepted: Caloplaca arcis, C. calcitrapa, C. dichroa, C. flavocitrina, C. geleverjae, C. limonia. Five new species are described: Caloplaca arcisproxima, C. austrocitrina, C. communis, C. confusa and C. nigromarina. Seven further species, Caloplaca britannica, C. citrina, C. marina, C. maritima, C. microthallina, C. ora and C. phlogina are also treated briefly. Some maritime species known from the Atlantic coast of Europe are absent from the region, and, surprisingly, Caloplaca citrina s. str. could not be confirmed from the study area. A key to the species present in the region is provided, although morphological characters are of very limited value in this group. The variability and taxonomic importance of particular features are discussed. No significant differences in secondary chemistry were observed among the species. Many examples of convergence and some semi-cryptic species were revealed by molecular data. The term 'semi-cryptic species' is introduced here into lichenology for those species which cannot be clearly diagnosed by their morphology, but which are determined by other characters, mainly by their ecology and distribution. We propose to describe formally such species, in spite of difficulties with subsequent morphological identification
    corecore