12 research outputs found

    ΠžΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΠΈ микробиологичСского состава Π²ΠΎΠ΄ Ρ€Π΅ΠΊΠΈ Раздольной (юТноС ΠŸΡ€ΠΈΠΌΠΎΡ€ΡŒΠ΅)

    Get PDF
    ΠŸΡ€ΠΎΠΈΠ·Π²Π΅Π΄Π΅Π½Π° ΠΎΡ†Π΅Π½ΠΊΠ° числСнности ΠΈ Π΅Π΅ сСзонной измСнчивости для Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… ΠΈΠ½Π΄ΠΈΠΊΠ°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ² Π² повСрхностных Π²ΠΎΠ΄Π°Ρ… Ρ€. Раздольной. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹ исслСдования ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΈ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ΠΈ ΠΏΠΎΠ΄Π²Π΅Ρ€ΠΆΠ΅Π½Ρ‹ высокому комплСксному органичСскому, Ρ‚Π΅Ρ…Π½ΠΎΠ³Π΅Π½Π½ΠΎΠΌΡƒ ΠΈ микробиологичСскому Π·Π°Π³Ρ€ΡΠ·Π½Π΅Π½ΠΈΡŽ. Π’ повСрхностных Π²ΠΎΠ΄Π°Ρ… Ρ€. Раздольной Π±Ρ‹Π»ΠΈ выявлСны эколого-трофичСскиС Π³Ρ€ΡƒΠΏΠΏΡ‹ ΠΌΠΈΠΊΡ€ΠΎΠΎΡ€Π³Π°Π½ΠΈΠ·ΠΌΠΎΠ², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΏΡ€ΠΈΠ½ΠΈΠΌΠ°Π»ΠΈ участиС Π² ΠΎΡ‡ΠΈΡ‰Π΅Π½ΠΈΠΈ Π²ΠΎΠ΄ Ρ€Π΅ΠΊΠΈ. Однако ΠΈΠ·-Π·Π° постоянного ΠΏΡ€ΠΈΡ‚ΠΎΠΊΠ° сточных Π²ΠΎΠ΄ Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠΈ Π½Π΅ успСвали ΠΏΠ΅Ρ€Π΅Ρ€Π°Π±Π°Ρ‚Ρ‹Π²Π°Ρ‚ΡŒ ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰Π΅Π΅ органичСскоС вСщСство, Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ Π½Π° Π½Π΅ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ Π΄Π°Π½Π½ΠΎΠΉ экосистСмы ΠΊ ΠΏΠΎΠ»Π½ΠΎΠΌΡƒ ΡΠ°ΠΌΠΎΠΎΡ‡ΠΈΡ‰Π΅Π½ΠΈΡŽ. Богласно классификатору качСства Π²ΠΎΠ΄, Π²ΠΎΠ΄Ρ‹ Ρ€. Раздольной ΠΏΠΎ микробиологичСским показатСлям отнСсСны ΠΊ грязным Π² Π»Π΅Ρ‚Π½ΠΈΠΉ сСзон, ΠΊ загрязнСнным Π² вСсСнний ΠΈ осСнний ΠΏΠ΅Ρ€ΠΈΠΎΠ΄Ρ‹ ΠΈ ΠΊ чистым Π² Π·ΠΈΠΌΠ½ΠΈΠΉ сСзон

    Seasonal hydrological and hydrochemical surveys in the Voevoda Bay (Amur Bay, Japan Sea)

    Get PDF
    Hydrological and hydrochemical surveys were conducted in the Voevoda Bay in May, August, and October, 2011 and February, 2012, in total 140 stations. Free water exchange of the bay with the Amur Bay is observed, with exception of its inner bights Kruglaya and Melkovodnaya. The water exchange is maintained by anticyclonic circulation with the inflow along the southern coast and outflow along the northern coast of the Voyevoda Bay. However, the opposite cyclonic circulation is observed in the Melkovodanaya Bight because of its coastal line patterns and fresh water discharge by the river. Dissolved oxygen content and partial pressure of CO2 in the bay waters are determined mostly by intensive processes of production and destruction of organic matter. There are three main groups of primary producers there, as diatom algae, sea grass Zostera marina , and periphyton. Specific chemical regime is formed in the Melkovodnaya Bight, in particular in winter when primary production depends on the ice cover and is driven by variations of photosynthetically active radiation passed through the ice. Seasonal variability of production-destruction processes intensity is discussed on the data of chemical parameters changes

    Gold in Ferromanganese Deposits from the NW Pacific

    No full text
    Ferromanganese crusts from four different areas of the North-West Pacific Oceanβ€”the Detroit (northern part of the Imperial Ridge) guyot, the Zubov (Marshall Islands) guyot, the β€œGummi Bear” seamount (an intraplate volcano near the Krusenstern FZ), and Belyaevsky volcano (the Sea of Japan)β€”were studied. Samples from the Detroit and Zubov guyots and the β€œGummi Bear” seamount have similar chemical and mineral compositions of hydrogenetic cobalt-rich ferromanganese crusts. Crust from the Sea of Japan seems to reflect a hydrothermal influence. The gold content in most samples from the Detroit guyot was 68 ppb and from the Zubov guyot varied from 180 to 1390 ppb, which is higher than the average for the Pacific crusts (55 ppb). Gold content in two other samples was less than 10 ppb. Based on the electron microscopic studies, aggregation of gold particles with a size of 680 ΞΌm were identified in the Detroit guyot crust. The sizes of the Au particles are up to 10–15 ΞΌm, which has not been previously noted. Gold particles similar in morphology and size were also found in the Zubov guyot crust, which is located far from the Detroit guyot. The largest particle of gold (β‰ˆ60 ΞΌm), represented by electrum, was found in the clay substrate from the β€œGummi Bear” seamount. The lamellar, rudaceous morphology of the gold particles from the Detroit and Zubov guyots reflects their in situ formation, in contrast to the agglutinated, rounded with traces of dragging gold grain found in the substrate of the sample from the β€œGummi Bear” seamount. Three-component (Ag-Au-Cu) gold particles were found in the hydrothermal crust from the Belyaevsky underwater volcano. Grains similar in composition were also found in Co-rich crust. The research results show that the gold was probably added to by hydrothermal fluid in the already-formed hydrogenetic ferromanganese crusts during rejuvenated volcanic stages. Biogeochemical processes may have played a major role in the formation of submicron solid-phase gold particles

    The influence of hydrothermal activity during the origin of Co-rich manganese crusts of the N-W Pacific

    No full text
    The distribution of cobalt, vanadium, cadmium and molybdenum in the mineral fractions of the Co-rich manganese crusts (CMC) from Zubov and Govorov Guyots is considered. It is shown that the concentrations of cobalt in the ferrous fraction, and vanadium, cadmium in the manganese fraction indicate the ability of the CMC to record the rejuvenated volcanism in the N-W Pacific

    Mineral Phase-Element Associations Based on Sequential Leaching of Ferromanganese Crusts, Amerasia Basin Arctic Ocean

    No full text
    Ferromanganese (FeMn) crusts from Mendeleev Ridge, Chukchi Borderland, and Alpha Ridge, in the Amerasia Basin, Arctic Ocean, are similar based on morphology and chemical composition. The crusts are characterized by a two- to four-layered stratigraphy. The chemical composition of the Arctic crusts differs significantly from hydrogenetic crusts from elsewhere of global ocean by high mean Fe/Mn ratios, high As, Li, V, Sc, and Th concentrations, and high detrital contents. Here, we present element distributions through crust stratigraphic sections and element phase association using several complementary techniques such as SEM-EDS, LA-ICP-MS, and sequential leaching, a widely employed method of element phase association that dissolves mineral phases of different stability step-by-step: Exchangeable cations and Ca carbonates, Mn-oxides, Fe-hydroxides, and residual fraction. Sequential leaching shows that the Arctic crusts have higher contents of most elements characteristic of the aluminosilicate phase than do Pacific crusts. Elements have similar distributions between the hydrogenetic Mn and Fe phases in all the Arctic and Pacific crusts. The main host phases for the elements enriched in the Arctic crusts over Pacific crusts (Li, As, Th, and V) are the Mn-phase for Li and Fe-phase for As, Th, and V; those elements also have higher contents in the residual aluminosilicate phase. Thus, higher concentrations of Li, As, Th, and V likely occur in the dissolved and particulate phases in bottom waters where the Arctic crusts grow, which has been shown to be true for Sc, also highly enriched in the crusts. The phase distributions of elements within the crust layers is mostly consistent among the Arctic crusts, being somewhat different in element concentrations in the residual phase

    Sr and Nd isotopes in hydrogenetic ferromanganese crusts from the North Pacific

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования обусловлСна Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ познания Ρ„ΡƒΠ½Π΄Π°ΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ Π½Π°ΡƒΡ‡Π½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΡ‹ - ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹ΠΉ Ρ€ΡƒΠ΄ΠΎΠ³Π΅Π½Π΅Π· ΠœΠΈΡ€ΠΎΠ²ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π°. Помимо пСрспСктивного ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ ΡΡ‹Ρ€ΡŒΡ, морскиС ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Π΅ образования ΡΠ²Π»ΡΡŽΡ‚ΡΡ рСгистраторами условий сСдимСнтации Π² ΠΏΡ€ΠΎΡˆΠ»ΠΎΠΌ. Π˜Ρ… Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ осущСствляСтся ΠΏΡ€ΠΈ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… процСссах, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½Ρ‹ Π² вСщСствСнном ΠΈ ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½ΠΎΠΌ составС. Π’ настоящСС врСмя Π½Π°ΠΈΠΌΠ΅Π½Π΅Π΅ ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΌ Ρ€Π΅Π³ΠΈΠΎΠ½ΠΎΠΌ Π’ΠΈΡ…ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π° являСтся Π΅Π³ΠΎ сСвСрный сСгмСнт. ЦСль: ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½Ρ‹ΠΉ состав Sr ΠΈ Nd ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΊΠΎΡ€ΠΎΠΊ сСвСрной ΠŸΠ°Ρ†ΠΈΡ„ΠΈΠΊΠΈ, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ…ΡΡ Π² условиях Π½ΠΈΠ·ΠΊΠΎΠ³ΠΎ Ρ‚Π΅Ρ€Ρ€ΠΈΠ³Π΅Π½Π½ΠΎΠ³ΠΎ ΠΏΠΎΡ‚ΠΎΠΊΠ°. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹: Π»ΠΈΡ‚ΠΎΠ»ΠΎΠ³ΠΎ-морфогСнСтичСский; рСнтгСноструктурный - ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ состава; масс- спСктромСтричСский - ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ химичСского ΠΈ ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½ΠΎΠ³ΠΎ состава. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π˜ΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½Ρ‹ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Π΅ образования Π³Π°ΠΉΠΎΡ‚ΠΎΠ² сСвСрной части Π˜ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΠΎΡ€ΡΠΊΠΎΠ³ΠΎ Ρ…Ρ€Π΅Π±Ρ‚Π° (Π”Π΅Ρ‚Ρ€ΠΎΠΉΡ‚, БьюзСй, Π₯Π°Π½Π·Π΅ΠΉ) ΠΈ Ρ€Π°Π·Π»ΠΎΠΌΠ½Ρ‹Ρ… Π·ΠΎΠ½ Амлия, Π Π°Ρ‚ ΠΈ Π‘Ρ‚Π΅ΠΉΠ»ΠΌΠ΅ΠΉΡ‚, Π° Ρ‚Π°ΠΊΠΆΠ΅ Π³Π°ΠΉΠΎΡ‚Π° Π’ΡƒΠ»ΠΊΠ°Π½ΠΎΠ»ΠΎΠ³ (ΠœΠ°Π³Π΅Π»Π»Π°Π½ΠΎΠ²Ρ‹ Π³ΠΎΡ€Ρ‹) Π² качСствС ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π°. На основании тСкстурно-структурных ΠΈ ΠΌΠΈΠ½Π΅Ρ€Π°Π»ΠΎΠ³ΠΎ-гСохимичСских особСнностСй ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Π΅ образования отнСсСны ΠΊ Π³ΠΈΠ΄Ρ€ΠΎΠ³Π΅Π½Π½Ρ‹ΠΌ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹ΠΌ ΠΊΠΎΡ€ΠΊΠ°ΠΌ. Π˜Π·ΠΎΡ‚ΠΎΠΏΠ½Ρ‹ΠΉ состав стронция ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² находится Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ ΠΎΡ‚ 0,70797 Π΄ΠΎ 0,70919 (срСднСС 0,70885). ΠŸΡ€ΠΈ этом содСрТаниС стронция измСняСтся ΠΏΠΎΡ‡Ρ‚ΠΈ Π² Ρ‚Ρ€ΠΈ Ρ€Π°Π·Π° - ΠΎΡ‚ 660 Π΄ΠΎ 1700 Π³/Ρ‚. Зависимости ΠΈΠ·ΠΎΡ‚ΠΎΠΏΠ½ΠΎΠ³ΠΎ состава ΠΎΡ‚ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ Sr Π½Π΅ отмСчаСтся. Π‘ΠΌΠ΅Ρ‰Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ 87Sr/86Sr происходит ΠΊ Π΅Π³ΠΎ значСниям, Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹ΠΌ для вулканичСских ΠΏΠΎΡ€ΠΎΠ΄, Ρ‡Ρ‚ΠΎ являСтся ΠΎΡ‚Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ΠΌ высокого количСства ΠΊΠ²Π°Ρ€Ρ†-ΠΏΠ»Π°Π³ΠΈΠΎΠΊΠ»Π°Π·ΠΎΠ²ΠΎΠΉ примСси Π² ΠΎΠ±Ρ€Π°Π·Ρ†Π΅. Π˜Π·ΠΎΡ‚ΠΎΠΏΠ½Ρ‹ΠΉ состав Π½Π΅ΠΎΠ΄ΠΈΠΌΠ° Π² пСрСсчСтС Π½Π° Ξ΅Nd Π²Π°Ρ€ΡŒΠΈΡ€ΡƒΠ΅Ρ‚ Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ ΠΎΡ‚ -3,5 Π΄ΠΎ -3,0, Ρ‡Ρ‚ΠΎ соотвСтствуСт соврСмСнному Π·Π½Π°Ρ‡Π΅Π½ΠΈΡŽ Π³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΠΉ Π²ΠΎΠ΄Ρ‹ сСвСрной ΠŸΠ°Ρ†ΠΈΡ„ΠΈΠΊΠΈ. ΠŸΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠ΅ значСния Ξ΅Nd Π΄ΠΎ -2,3 соотвСтствуСт ΠΏΡ€ΠΎΠ±Π΅ с максимальной Π°Π»Π»ΠΎΡ‚ΠΈΠ³Π΅Π½Π½ΠΎΠΉ ΠΏΡ€ΠΈΠΌΠ΅ΡΡŒΡŽ. МинимальноС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ξ΅Nd (-4,4) установлСно Π² подошвСнном слоС ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²ΠΎΠΉ ΠΊΠΎΡ€ΠΊΠΈ Π³Π°ΠΉΠΎΡ‚Π° Π₯Π°Π½Π·Π΅ΠΉ. Π’Π°ΠΊΠΎΠ΅ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ соотвСтствуСт ΠΌΠΈΠΎΡ†Π΅Π½ΠΎΠ²ΠΎΠΉ Π³Π»ΡƒΠ±ΠΈΠ½Π½ΠΎΠΉ Π²ΠΎΠ΄Π΅ сСвСрной ΠŸΠ°Ρ†ΠΈΡ„ΠΈΠΊΠΈ. Π­Ρ‚ΠΎ являСтся основаниСм ΠΏΠΎΠ»Π°Π³Π°Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π² ΠΌΠΈΠΎΡ†Π΅Π½Π΅ Π½Π° Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ вСщСствСнного состава ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΊΠΎΡ€ΠΎΠΊ сСвСрной ΠŸΠ°Ρ†ΠΈΡ„ΠΈΠΊΠΈ ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π»ΠΈ влияниС Π³Π»ΡƒΠ±ΠΈΠ½Π½Ρ‹Π΅ атлантичСскиС Π²ΠΎΠ΄Ρ‹, ΠΏΠΎΡΡ‚ΡƒΠΏΠ°ΡŽΡ‰ΠΈΠ΅ Ρ‡Π΅Ρ€Π΅Π· Панамский ΠΏΡ€ΠΎΠ»ΠΈΠ². ΠŸΡ€Π΅ΠΊΡ€Π°Ρ‰Π΅Π½ΠΈΠ΅ ΠΈΡ… поставки Π² Π’ΠΈΡ…ΠΈΠΉ ΠΎΠΊΠ΅Π°Π½ ΠΏΡ€ΠΎΠΈΠ·ΠΎΡˆΠ»ΠΎ, вСроятно, ΠΏΡΡ‚ΡŒ ΠΌΠ»Π½ Π»Π΅Ρ‚ Π½Π°Π·Π°Π΄.The relevance of the study is caused by the need to get knowledge of the fundamental scientific problem - the ferromanganese precipitation of the World Ocean. Marine ferromanganese deposits are records of sedimentation conditions in the past as well as promising mineral raw materials. Their formation is carried out under various processes, which are reflected in the bulk and isotopic composition of ferromanganese deposits. Currently, the least studied region of the Pacific Ocean is its northern segment. The main aim of the research is to study Sr and Nd isotopic composition of the ferromanganese crusts from the Norther Pacific, formed under low detrital influx. Methods: litho-morphology; x-ray diffraction - determination of the mineral composition; mass spectrometric - determination of the chemical and isotopic composition. Results. Ferromanganese deposits of the guyots of the northern part of the Imperial Range (Detroit, Suzei, Hanzei) and the Amliya, Rat and Stailmate fracture zones, as well as the Vulkanolog Guyot (Magellan Seamounts), as a comparative material, were studied. Based on the mineralogical and geochemical bulk compositions, the studied ferromanganese deposits are classified as hydrogenetic ferromanganese crusts. The strontium isotopic composition of the studied samples is in the range from 0,70797 to 0,70919 (average 0,70885), with most of the samples concentrated at 0,709. At the same time, the content of strontium changes almost three times from 660 to 1700 ppm. The dependence of the isotopic composition on the concentration is not observed. The displacement of 87Sr/86Sr occurs towards volcanic rocks, which reflects the high amount of quartz-plagioclase admixture in the sample. The isotopic composition of neodymium, in terms of Ξ΅Nd, varies in the range from -3,5 to -3,0, which corresponds to the modern deep seawater of the North Pacific. An increase in Ξ΅Nd to -2,3 corresponds to a sample with the maximum terrigenous admixture. The minimum value of Ξ΅Nd (-4,4) was found in the bottom layer of the ferromanganese crust from the Hanzei Guyot. This value corresponds to the Miocene North Pacific Deep water. This is a reason to believe that in the Miocene the formation of the bulk composition of the North Pacific ferromanganese crusts was under North Atlantic Deep Waters entering through the Panama Gateway. The end of North Atlantic Deep Waters delivery to the Pacific was finished about five million years ago

    Extraction-atomic-absorption determination of gold in marine ferromanganese formations after its concentration with dibutyl sulphide in toluene

    No full text
    ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдования обусловлСна Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΡΡ‚ΡŒΡŽ Π½Π°Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ мСтодичСских Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΠΏΠΎ количСствСнному ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ содСрТания Π·ΠΎΠ»ΠΎΡ‚Π° Π² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… образованиях ΠΈ Π΄Ρ€ΡƒΠ³ΠΈΡ… гСологичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚Π°Ρ… Π² связи с ΡΡƒΡ‰Π΅ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΠΌΠΈ здСсь Ρ…ΠΈΠΌΠΈΠΊΠΎ-аналитичСскими трудностями ΠΈ нСдостаточным количСством стандартных ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² состава ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ с Π½Π°Π΄Π΅ΠΆΠ½ΠΎ аттСстованным содСрТаниСм Π² Π½ΠΈΡ… Π·ΠΎΠ»ΠΎΡ‚Π°. ЦСль: ΠΏΡ€ΠΎΠ²Π΅Ρ€ΠΊΠ° примСнимости ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ экстракции Π·ΠΎΠ»ΠΎΡ‚Π° с использованиСм Π½Π΅Ρ„Ρ‚Π΅ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠ² (Π΄ΠΈΠ±ΡƒΡ‚ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄Π° Π² Ρ‚ΠΎΠ»ΡƒΠΎΠ»Π΅) ΠΊ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π·ΠΎΠ»ΠΎΡ‚Π° Π² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… образованиях с элСктротСрмичСским Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционным ΠΎΠΊΠΎΠ½Ρ‡Π°Π½ΠΈΠ΅ΠΌ, наряду с ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΎΠΉ извлСчСния Π·ΠΎΠ»ΠΎΡ‚Π° Π΅Π³ΠΎ соосаТдСниСм с Ρ‚Π΅Π»Π»ΡƒΡ€ΠΎΠΌ. ΠžΠ±ΡŠΠ΅ΠΊΡ‚Ρ‹: ΠΏΡ€ΠΎΠ±Ρ‹ ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈΠ· Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π°ΠΉΠΎΠ½ΠΎΠ² сСвСрной части Π’ΠΈΡ…ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ российский стандартный ΠΎΠ±Ρ€Π°Π·Π΅Ρ† состава с аттСстованным содСрТаниСм Π·ΠΎΠ»ΠΎΡ‚Π° ΠžΠžΠŸΠ• 603 (Π‘Π”Πž-6) ΠΈ стандарт ГСологичСской слуТбы БША NOD-A-1. ΠœΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π·ΠΎΠ»ΠΎΡ‚Π° ΠΏΡ€ΠΈ Π΅Π³ΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… образованиях ΠΏΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ°ΠΌ экстракции Π΄ΠΈΠ±ΡƒΡ‚ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠΌ Π² Ρ‚ΠΎΠ»ΡƒΠΎΠ»Π΅ ΠΈ соосаТдСниСм с Ρ‚Π΅Π»Π»ΡƒΡ€ΠΎΠΌ ΠΈ элСктротСрмичСским Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционным Π°Π½Π°Π»ΠΈΠ·ΠΎΠΌ. ΠžΠ±Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π° с ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² матСматичСской статистики. Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° экстракции Π·ΠΎΠ»ΠΎΡ‚Π° с Π΄ΠΈΠ±ΡƒΡ‚ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠΌ Π² Ρ‚ΠΎΠ»ΡƒΠΎΠ»Π΅ ΠΏΠΎΠΊΠ°Π·Π°Π»Π° своС прСимущСство для Ρ†Π΅Π»Π΅ΠΉ Π°Π½Π°Π»ΠΈΠ·Π° ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€ΠΎΠΉ соосаТдСния с Ρ‚Π΅Π»Π»ΡƒΡ€ΠΎΠΌ, Π² связи с Π΅Π΅ высокой ΡΠ΅Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒΡŽ, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰Π΅ΠΉ ΠΈΠ·Π±Π°Π²Π»ΡΡ‚ΡŒΡΡ ΠΎΡ‚ влияния ΠΌΠ°Ρ‚Ρ€ΠΈΡ‡Π½Ρ‹Ρ… ΠΊΠΎΠΌΠΏΠΎΠ½Π΅Π½Ρ‚ΠΎΠ², Π² ΠΏΠ΅Ρ€Π²ΡƒΡŽ ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ ΠΆΠ΅Π»Π΅Π·Π°, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΌΠ΅ΡˆΠ°ΡŽΡ‰Π΅Π΅ Π½Π°Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ ΡΠΏΠ΅ΠΊΡ‚Ρ€Π°Π»ΡŒΠ½Ρ‹Ρ… Π»ΠΈΠ½ΠΈΠΉ ΠΏΡ€ΠΈ Π°Ρ‚ΠΎΠΌΠ½ΠΎ-абсорбционном ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠΈ Π·ΠΎΠ»ΠΎΡ‚Π°. ΠœΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° экстракции Π·ΠΎΠ»ΠΎΡ‚Π° с Π΄ΠΈΠ±ΡƒΡ‚ΠΈΠ»ΡΡƒΠ»ΡŒΡ„ΠΈΠ΄ΠΎΠΌ Π±Ρ‹Π»Π° Π°ΠΏΡ€ΠΎΠ±ΠΈΡ€ΠΎΠ²Π°Π½Π° для Π°Π½Π°Π»ΠΈΠ·Π° ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΈΠ· Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Ρ€Π°ΠΉΠΎΠ½ΠΎΠ² сСвСрной части Π’ΠΈΡ…ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π°, Π° Ρ‚Π°ΠΊΠΆΠ΅ стандартных ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² состава ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ - российском ΠžΠžΠŸΠ• 603 (Π‘Π”Πž-6) ΠΈ амСриканском стандартС NOD-A-1. ИспользованиС Π²ΠΎΠ·Π΄ΡƒΡˆΠ½ΠΎΡΡƒΡ…ΠΎΠΉ навСски 2 Π³ ΠΎΠ±Ρ€Π°Π·Ρ†Π° Π΄Π°Π»ΠΎ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ ΠΏΡ€ΠΈ Π°Π½Π°Π»ΠΈΠ·Π΅ стандартного ΠΎΠ±Ρ€Π°Π·Ρ†Π° Π‘Π”Πž-6 с аттСстованным содСрТаниСм Π·ΠΎΠ»ΠΎΡ‚Π° 10Β±6 Π½Π³/Π³, Π½ΠΎ Π½Π΅ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΠ»ΠΎ ΡƒΡΠΏΠ΅ΡˆΠ½ΠΎ ΠΏΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ±Ρ€Π°Π·Π΅Ρ† NOD-A-1, для ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Π±Ρ‹Π»ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ нСвоспроизводимыС Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π’ этой связи для опрСдСлСния Π² Π΄Π°Π½Π½ΠΎΠΌ стандартС Π·ΠΎΠ»ΠΎΡ‚Π° рСкомСндуСтся использованиС Π΅Ρ‰Π΅ Π±ΠΎΠ»ΡŒΡˆΠΈΡ… навСсок. Атомно-абсорбционноС ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ Π·ΠΎΠ»ΠΎΡ‚Π° Π² ΠΈΠ·ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·Ρ†Π°Ρ… ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΏΠΎ ΠΏΡ€Π΅Π΄Π»Π°Π³Π°Π΅ΠΌΠΎΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹, ΠΎΡ‚Π²Π΅Ρ‡Π°ΡŽΡ‰ΠΈΠ΅ трСбованиям гСохимичСского Π°Π½Π°Π»ΠΈΠ·Π°, Π² Ρ‚ΠΎΠΌ числС ΠΈ ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ИБП-МБ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ. Однако ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ Ρ€Π°Π½Π΅Π΅ элСктронно-микроскопичСскоС исслСдованиС ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΊΠΎΡ€ΠΎΠΊ сСвСро-Π·Π°ΠΏΠ°Π΄Π½ΠΎΠΉ части Π’ΠΈΡ…ΠΎΠ³ΠΎ ΠΎΠΊΠ΅Π°Π½Π° выявило присутствиС Π² Π½ΠΈΡ… частиц самородного Π·ΠΎΠ»ΠΎΡ‚Π°, Ρ‡Ρ‚ΠΎ ΠΌΠΎΠΆΠ΅Ρ‚, Π² свою ΠΎΡ‡Π΅Ρ€Π΅Π΄ΡŒ, Π²Ρ‹Π·Ρ‹Π²Π°Ρ‚ΡŒ мСтодичСскиС слоТности Π² процСссС ΠΎΡ‚Π±ΠΎΡ€Π° ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΏΡ€ΠΎΠ±Ρ‹ ΠΈ Π² ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π΅ ΠΏΠΎΠ΄Π³ΠΎΡ‚ΠΎΠ²ΠΊΠΈ ΠΎΠ±Ρ€Π°Π·Ρ†ΠΎΠ² ΠΆΠ΅Π»Π΅Π·ΠΎΠΌΠ°Ρ€Π³Π°Π½Ρ†Π΅Π²Ρ‹Ρ… ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊ Π°Π½Π°Π»ΠΈΠ·Ρƒ.The relevance of the study is caused by the need to develop methodological solutions for the quantitative determination of gold content in ferromanganese formations and other geological objects due to the chemical and analytical difficulties that exist here and the insufficient number of certified reference materials of ferromanganese formations with a reliably certified gold content in them. The main aim is verification of the applicability of the gold extraction technique using petroleum sulfides (dibutyl sulfide in toluene) f or determining gold in ferromanganese formations with electrothermal atomic absorption termination, along with the gold extraction method by its co-precipitation with tellurium. Objects: samples of ferromanganese formations from various regions of the North Pacific Ocean, as well as the Russian certified reference materials with a certified gold content OOPE 603 (SDO-6) and the USGS standard NOD-A-1. Methods. Gold was concentrated during its determination in ferromanganese formations by the methods of extraction with dibutyl sulfide in toluene and co-precipitation with tellurium and electrothermal atomic absorption analysis. Processing of the obtained results was carried out using the methods of mathematical statistics. Results. The method of gold extraction with dibutyl sulfide in toluene has shown its advantage for the purposes of analysis of ferroma nganese formations in comparison with the procedure of co-precipitation with tellurium, due to its high selectivity, which makes it possible to get rid of the influence of matrix components, primarily iron, which forms an interfering superposition of spectral lines during atomic absorption determination of gold. The technique of gold extraction with dibutyl sulfide was tested for the analysis of ferromanganese formations samples from various regions of the North Pacific Ocean, as well as for the analysis of ferromanganese formations samples - the Russian OOPE 603 (SDO-6) and the American standard NOD-A-1. The use of an air-dry sample of 2 g of the sample gave a satisfactory result in the analysis of the standard sample SDO-6, with a certified gold content of 10Β±6 ng/g, but did not allow successful analysis of the NOD-A-1 sample, for which irreproducible results were obtained. In this regard, the use of even larger weights is recommended for defining gold in this standard. Atomic absorption determination of gold in the studied ferromanganese formations samples using the proposed method gave results that meet the requirements of geochemical analysis, including in comparison with the ICP-MS method. However, an earlier electron microscopic study of ferromanganese crusts in the northwestern part of the Pacific Ocean showed the presence of native gold particles in them, which, in its turn, can cause methodological difficulties in the process of taking a representative sample and d the procedure for preparing ferromanganese formations samples for analysis

    Production patterns in the estuary of the Razdolnaya River in period of freezing

    No full text
    Light conditions and nutrients supply, as factors of primary production, are considered for the Razdolnaya River estuary in period of freezing (January-March). Water samples were collected at the water surface and at the bottom for measuring of salinity and concentrations of chlorophyll (Chl), phosphate, nitrite, nitrate, ammonium, and silicate. Profiles of water temperature, conductivity, Chl fluorescence, and turbidity were measured in situ by CTD-probe RBR XR-620; besides, vertical attenuation of PAR was measured at each station. The internal estuary (salinity 5 FTU) and high concentration of humine substances (up to 2 mgC/l) in the river waters. The ice cover lowered light intensity in the river water, too. In the zone close to the river bar with salinity 1-25 ‰, Chl concentration was 0.4-1.7 mg/m3 irrespective of salinity. DIN (dissolved inorganic nitrogen) and DISi (dissolved inorganic silicon) had conservative behaviour in this zone, the DISi : DIN ratio was β‰ˆ 0.7-1.1.These features indicate an absence of significant production or destruction of organic matter in the internal estuary. However, intensive removal of dissolved inorganic phosphorus (DIP) (up to 80 %) was observed in this zone, that’s why the extraordinary high DIN : DIP ratio was observed under salinity 5-20 ‰ (up to 200 : 1, though the usual DIN : DIP ratio in the river water is close to Redfild ratio: DIN : DIP = (21-27) : 1). In the external estuary (salinity15-32 ‰), the water became more transparent ( kd = 0.5-0.3 m-1; zeu β‰ˆ 9-15 m) and both chlorophyll concentration and dissolved oxygen content became higher (Chl up to 20 mg/m3, DO up to 500 mM/kg) as the result of high primary production, whereas nutrients concentrations became lower: DIP were completely removed and DIN and DISi retained 10-25 % of their initial values in the river water. The primary production value was evaluated by two ways: on the data of light intensity and on the data of nutrients removal. The light conditions in the internal estuary in February-March corresponded to the value 20-80 mgC/m2d which declines in 6-13 times and 50-100 times (close to zero) under the ice and under the ice with snow, respectively. In the external estuary, the light conditions in March corresponded to the value 300-600 mgC/m2d in the areas without ice and to the value lower in 6-13 times under the ice. The nutrients removal corresponded to the primary production value β‰ˆ 200-400 mgC/m2d in the external estuary, irrespective of ice cover, that is close to the previous estimation by light conditions. So, the primary production in the Razdolnaya River estuary changes in winter in the range from 0 to 500 mgC/m2d, increasing seaward, the ice and snow are the factors of its limitation by light

    Seasonal Hypoxia of Amursky Bay in the Japan Sea: Formation and Destruction

    No full text
    Based on detailed hydrological and hydrochemical surveys carried out in each of the four seasons of 2008, Amursky Bay in the north west quadrant of the Japan Sea was found to experience seasonal hypoxia. The primary process of hypoxia formation is a microbiological degradation of the ԤexcessԬ amount of diatoms under rather low photosynthetic active radiation in bottom layer and weak water dynamics. The microbiological decay of dead diatoms under light deficient conditions intensively consumes dissolved oxygen and produces phosphates, ammonium, silicates, and dissolved inorganic carbon. Existence of a phytoplankton ԤexcessԬ is caused by phytoplankton bloom resulting from nutrient pulses into Amursky Bay. There are two main sources of these nutrients: the waste waters of Vladivostok city and discharge from Razdolnaya River. The river delivers more than two times the amount of nutrients than the waste waters of Vladivostok. It is suggested that the phytoplankton ԤexcessԬ might be caused by an enhanced supply of nutrients delivered into the surface layer resulting from the increased discharge of the river on a short time scale. Our data suggest that hypoxia is seasonal, with a peak at the end of summer. The upwelling of the Japan Sea water in the beginning of the fall season and its advection across the shelf is the primary process by which the hypoxia is destroyed. During the winter, strong vertical mixing due to termohaline convection makes the water column uniform and brings more oxygen into the water along with high primary production under the ice. Thus, during the winter season, the ecosystem of Amursky Bay recovers completely
    corecore