4 research outputs found
Verifying Real-Time Systems using Explicit-time Description Methods
Timed model checking has been extensively researched in recent years. Many
new formalisms with time extensions and tools based on them have been
presented. On the other hand, Explicit-Time Description Methods aim to verify
real-time systems with general untimed model checkers. Lamport presented an
explicit-time description method using a clock-ticking process (Tick) to
simulate the passage of time together with a group of global variables for time
requirements. This paper proposes a new explicit-time description method with
no reliance on global variables. Instead, it uses rendezvous synchronization
steps between the Tick process and each system process to simulate time. This
new method achieves better modularity and facilitates usage of more complex
timing constraints. The two explicit-time description methods are implemented
in DIVINE, a well-known distributed-memory model checker. Preliminary
experiment results show that our new method, with better modularity, is
comparable to Lamport's method with respect to time and memory efficiency