6,036 research outputs found

    Integral formulas for wave functions of quantum many-body problems and representations of gl(n)

    Full text link
    We derive explicit integral formulas for eigenfunctions of quantum integrals of the Calogero-Sutherland-Moser operator with trigonometric interaction potential. In particular, we derive explicit formulas for Jack's symmetric functions. To obtain such formulas, we use the representation of these eigenfunctions by means of traces of intertwining operators between certain modules over the Lie algebra gln\frak gl_n, and the realization of these modules on functions of many variables.Comment: 6 pages. One reference ([FF]) has been corrected. New references and an introduction have been adde

    Small divisor problem in the theory of three-dimensional water gravity waves

    Get PDF
    We consider doubly-periodic travelling waves at the surface of an infinitely deep perfect fluid, only subjected to gravity gg and resulting from the nonlinear interaction of two simply periodic travelling waves making an angle 2θ2\theta between them. \newline Denoting by μ=gL/c2\mu =gL/c^{2} the dimensionless bifurcation parameter (LL is the wave length along the direction of the travelling wave and cc is the velocity of the wave), bifurcation occurs for μ=cosθ\mu =\cos \theta. For non-resonant cases, we first give a large family of formal three-dimensional gravity travelling waves, in the form of an expansion in powers of the amplitudes of two basic travelling waves. "Diamond waves" are a particular case of such waves, when they are symmetric with respect to the direction of propagation.\newline \emph{The main object of the paper is the proof of existence} of such symmetric waves having the above mentioned asymptotic expansion. Due to the \emph{occurence of small divisors}, the main difficulty is the inversion of the linearized operator at a non trivial point, for applying the Nash Moser theorem. This operator is the sum of a second order differentiation along a certain direction, and an integro-differential operator of first order, both depending periodically of coordinates. It is shown that for almost all angles θ\theta , the 3-dimensional travelling waves bifurcate for a set of "good" values of the bifurcation parameter having asymptotically a full measure near the bifurcation curve in the parameter plane (θ,μ).(\theta ,\mu ).Comment: 119

    Quantum integrable systems and representations of Lie algebras

    Full text link
    In this paper the quantum integrals of the Hamiltonian of the quantum many-body problem with the interaction potential K/sinh^2(x) (Sutherland operator) are constructed as images of higher Casimirs of the Lie algebra gl(N) under a certain homomorphism from the center of U(gl(N)) to the algebra of differential operators in N variables. A similar construction applied to the affine gl(N) at the critical level k=-N defines a correspondence between higher Sugawara operators and quantum integrals of the Hamiltonian of the quantum many-body problem with the potential equal to constant times the Weierstrass function. This allows one to give a new proof of the Olshanetsky-Perelomov theorem stating that this Hamiltonian defines a completely integrable quantum system. We also give a new expression for eigenfunctions of the quantum integrals of the Sutherland operator as traces of intertwining operators between certain representations of gl(N).Comment: 17 pages, no figure
    corecore