57 research outputs found

    Low ML-Decoding Complexity, Large Coding Gain, Full-Rate, Full-Diversity STBCs for 2 X 2 and 4 X 2 MIMO Systems

    Full text link
    This paper (Part of the content of this manuscript has been accepted for presentation in IEEE Globecom 2008, to be held in New Orleans) deals with low maximum likelihood (ML) decoding complexity, full-rate and full-diversity space-time block codes (STBCs), which also offer large coding gain, for the 2 transmit antenna, 2 receive antenna (2×22\times 2) and the 4 transmit antenna, 2 receive antenna (4×24\times 2) MIMO systems. Presently, the best known STBC for the 2×22\times2 system is the Golden code and that for the 4×24\times2 system is the DjABBA code. Following the approach by Biglieri, Hong and Viterbo, a new STBC is presented in this paper for the 2×22\times 2 system. This code matches the Golden code in performance and ML-decoding complexity for square QAM constellations while it has lower ML-decoding complexity with the same performance for non-rectangular QAM constellations. This code is also shown to be \emph{information-lossless} and \emph{diversity-multiplexing gain} (DMG) tradeoff optimal. This design procedure is then extended to the 4×24\times 2 system and a code, which outperforms the DjABBA code for QAM constellations with lower ML-decoding complexity, is presented. So far, the Golden code has been reported to have an ML-decoding complexity of the order of M4M^4 for square QAM of size MM. In this paper, a scheme that reduces its ML-decoding complexity to M2MM^2\sqrt{M} is presented.Comment: 28 pages, 5 figures, 3 tables, submitted to IEEE Journal of Selected Topics in Signal Processin

    Generalized Silver Codes

    Full text link
    For an ntn_t transmit, nrn_r receive antenna system (nt×nrn_t \times n_r system), a {\it{full-rate}} space time block code (STBC) transmits nmin=min(nt,nr)n_{min} = min(n_t,n_r) complex symbols per channel use. The well known Golden code is an example of a full-rate, full-diversity STBC for 2 transmit antennas. Its ML-decoding complexity is of the order of M2.5M^{2.5} for square MM-QAM. The Silver code for 2 transmit antennas has all the desirable properties of the Golden code except its coding gain, but offers lower ML-decoding complexity of the order of M2M^2. Importantly, the slight loss in coding gain is negligible compared to the advantage it offers in terms of lowering the ML-decoding complexity. For higher number of transmit antennas, the best known codes are the Perfect codes, which are full-rate, full-diversity, information lossless codes (for nrntn_r \geq n_t) but have a high ML-decoding complexity of the order of MntnminM^{n_tn_{min}} (for nr<ntn_r < n_t, the punctured Perfect codes are considered). In this paper, a scheme to obtain full-rate STBCs for 2a2^a transmit antennas and any nrn_r with reduced ML-decoding complexity of the order of Mnt(nmin(3/4))0.5M^{n_t(n_{min}-(3/4))-0.5}, is presented. The codes constructed are also information lossless for nrntn_r \geq n_t, like the Perfect codes and allow higher mutual information than the comparable punctured Perfect codes for nr<ntn_r < n_t. These codes are referred to as the {\it generalized Silver codes}, since they enjoy the same desirable properties as the comparable Perfect codes (except possibly the coding gain) with lower ML-decoding complexity, analogous to the Silver-Golden codes for 2 transmit antennas. Simulation results of the symbol error rates for 4 and 8 transmit antennas show that the generalized Silver codes match the punctured Perfect codes in error performance while offering lower ML-decoding complexity.Comment: Accepted for publication in the IEEE Transactions on Information Theory. This revised version has 30 pages, 7 figures and Section III has been completely revise

    A Low-Complexity, Full-Rate, Full-Diversity 2 X 2 STBC with Golden Code's Coding Gain

    Full text link
    This paper presents a low-ML-decoding-complexity, full-rate, full-diversity space-time block code (STBC) for a 2 transmit antenna, 2 receive antenna multiple-input multiple-output (MIMO) system, with coding gain equal to that of the best and well known Golden code for any QAM constellation. Recently, two codes have been proposed (by Paredes, Gershman and Alkhansari and by Sezginer and Sari), which enjoy a lower decoding complexity relative to the Golden code, but have lesser coding gain. The 2×22\times 2 STBC presented in this paper has lesser decoding complexity for non-square QAM constellations, compared with that of the Golden code, while having the same decoding complexity for square QAM constellations. Compared with the Paredes-Gershman-Alkhansari and Sezginer-Sari codes, the proposed code has the same decoding complexity for non-rectangular QAM constellations. Simulation results, which compare the codeword error rate (CER) performance, are presented.Comment: Submitted to IEEE Globecom - 2008. 6 pages, 3 figures, 1 tabl

    Maximum Rate of Unitary-Weight, Single-Symbol Decodable STBCs

    Full text link
    It is well known that the Space-time Block Codes (STBCs) from Complex orthogonal designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD). The weight matrices of the square CODs are all unitary and obtainable from the unitary matrix representations of Clifford Algebras when the number of transmit antennas nn is a power of 2. The rate of the square CODs for n=2an = 2^a has been shown to be a+12a\frac{a+1}{2^a} complex symbols per channel use. However, SSD codes having unitary-weight matrices need not be CODs, an example being the Minimum-Decoding-Complexity STBCs from Quasi-Orthogonal Designs. In this paper, an achievable upper bound on the rate of any unitary-weight SSD code is derived to be a2a1\frac{a}{2^{a-1}} complex symbols per channel use for 2a2^a antennas, and this upper bound is larger than that of the CODs. By way of code construction, the interrelationship between the weight matrices of unitary-weight SSD codes is studied. Also, the coding gain of all unitary-weight SSD codes is proved to be the same for QAM constellations and conditions that are necessary for unitary-weight SSD codes to achieve full transmit diversity and optimum coding gain are presented.Comment: accepted for publication in the IEEE Transactions on Information Theory, 9 pages, 1 figure, 1 Tabl

    Cluster-Seeking James-Stein Estimators

    Get PDF
    This paper considers the problem of estimating a high-dimensional vector of parameters θRn\boldsymbol{\theta} \in \mathbb{R}^n from a noisy observation. The noise vector is i.i.d. Gaussian with known variance. For a squared-error loss function, the James-Stein (JS) estimator is known to dominate the simple maximum-likelihood (ML) estimator when the dimension nn exceeds two. The JS-estimator shrinks the observed vector towards the origin, and the risk reduction over the ML-estimator is greatest for θ\boldsymbol{\theta} that lie close to the origin. JS-estimators can be generalized to shrink the data towards any target subspace. Such estimators also dominate the ML-estimator, but the risk reduction is significant only when θ\boldsymbol{\theta} lies close to the subspace. This leads to the question: in the absence of prior information about θ\boldsymbol{\theta}, how do we design estimators that give significant risk reduction over the ML-estimator for a wide range of θ\boldsymbol{\theta}? In this paper, we propose shrinkage estimators that attempt to infer the structure of θ\boldsymbol{\theta} from the observed data in order to construct a good attracting subspace. In particular, the components of the observed vector are separated into clusters, and the elements in each cluster shrunk towards a common attractor. The number of clusters and the attractor for each cluster are determined from the observed vector. We provide concentration results for the squared-error loss and convergence results for the risk of the proposed estimators. The results show that the estimators give significant risk reduction over the ML-estimator for a wide range of θ\boldsymbol{\theta}, particularly for large nn. Simulation results are provided to support the theoretical claims.Marie Curie Career Integration Grant; 10.13039/501100004815-Early Career Grant from the Isaac Newton Trus

    Empirical Bayes Estimators for Sparse Sequences.

    Get PDF
    The problem of estimating a high-dimensional sparse vector θ ∈ ℝ n from an observation in i.i.d. Gaussian noise is considered. An empirical Bayes shrinkage estimator, derived using a Bernoulli-Gaussian prior, is analyzed and compared with the well-known soft-thresholding estimator using squared-error loss as a measure of performance. We obtain concentration inequalities for the Stein's unbiased risk estimate and the loss function of both estimators. Depending on the underlying θ, either the proposed empirical Bayes (eBayes) estimator or soft-thresholding may have smaller loss. We consider a hybrid estimator that attempts to pick the better of the soft-thresholding estimator and the eBayes estimator by comparing their risk estimates. It is shown that: i) the loss of the hybrid estimator concentrates on the minimum of the losses of the two competing estimators, and ii) the risk of the hybrid estimator is within order 1/√n of the minimum of the two risks. Simulation results are provided to support the theoretical results
    corecore