2 research outputs found

    Systemic and ocular fluid compounds as potential biomarkers in age-related macular degeneration

    Get PDF
    Biomarkers can help unravel mechanisms of disease and identify new targets for therapy. They can also be useful in clinical practice for monitoring disease progression, evaluation of treatment efficacy, and risk assessment in multifactorial diseases, such as age-related macular degeneration (AMD). AMD is a highly prevalent progressive retinal disorder for which multiple genetic and environmental risk factors have been described, but the exact etiology is not yet fully understood. Many compounds have been evaluated for their association with AMD. We performed an extensive literature review of all compounds measured in serum, plasma, vitreous, aqueous humor, and urine of AMD patients. Over 3600 articles were screened, resulting in more than 100 different compounds analyzed in AMD studies, involved in neovascularization, immunity, lipid metabolism, extracellular matrix, oxidative stress, diet, hormones, and comorbidities (such as kidney disease). For each compound, we provide a short description of its function and discuss the results of the studies in relation to its usefulness as AMD biomarker. In addition, biomarkers identified by hypothesis-free techniques, including metabolomics, proteomics, and epigenomics, are covered. In summary, compounds belonging to the oxidative stress pathway, the complement system, and lipid metabolism are the most promising biomarker candidates for AMD. We hope that this comprehensive survey of the literature on systemic and ocular fluid compounds as potential biomarkers in AMD will provide a stepping stone for future research and possible implementation in clinical practice

    Analysis of rare variants in the C3 gene in patients with age-related macular degeneration

    Get PDF
    Age-related macular degeneration (AMD) is a progressive retinal disorder affecting over 33 million people worldwide. Genome-wide association studies (GWASs) for AMD identified common variants at 19 loci accounting for 15-65% of the heritability and it has been hypothesized that the missing heritability may be attributed to rare variants with large effect sizes. Common variants in the complement component 3 (C3) gene have been associated with AMD and recently a rare C3 variant (Lys155Gln) was identified which exerts a large effect on AMD susceptibility independent of the common variants. To explore whether additional rare variants in the C3 gene are associated with AMD, we sequenced all coding exons in 84 unrelated AMD cases. Subsequently, we genotyped all identified variants in 1474 AMD cases and 2258 controls. Additionally, because of the known genetic overlap between AMD and atypical hemolytic uremic syndrome (aHUS), we genotyped two recurrent aHUS-associated C3 mutations in the entire cohort. Overall, we identified three rare variants (Lys65Gln (P = 0.04), Arg735Trp (OR = 17.4, 95% CI = 2.2-136; P = 0.0003), and Ser1619Arg (OR = 5.2, 95% CI = 1.0-25; P = 0.05) at the C3 locus that are associated with AMD in our EUGENDA cohort. However, the Arg735Trp and Ser1619Arg variants were not found to be associated with AMD in the Rotterdam Study. The Lys65Gln variant was only identified in patients from Nijmegen, the Netherlands, and thus may represent a region-specific AMD risk variant
    corecore