9 research outputs found

    Large time existence for 3D water-waves and asymptotics

    Full text link
    We rigorously justify in 3D the main asymptotic models used in coastal oceanography, including: shallow-water equations, Boussinesq systems, Kadomtsev-Petviashvili (KP) approximation, Green-Naghdi equations, Serre approximation and full-dispersion model. We first introduce a ``variable'' nondimensionalized version of the water-waves equations which vary from shallow to deep water, and which involves four dimensionless parameters. Using a nonlocal energy adapted to the equations, we can prove a well-posedness theorem, uniformly with respect to all the parameters. Its validity ranges therefore from shallow to deep-water, from small to large surface and bottom variations, and from fully to weakly transverse waves. The physical regimes corresponding to the aforementioned models can therefore be studied as particular cases; it turns out that the existence time and the energy bounds given by the theorem are always those needed to justify the asymptotic models. We can therefore derive and justify them in a systematic way.Comment: Revised version of arXiv:math.AP/0702015 (notations simplified and remarks added) To appear in Inventione

    Global Well-posedness of an Inviscid Three-dimensional Pseudo-Hasegawa-Mima Model

    Full text link
    The three-dimensional inviscid Hasegawa-Mima model is one of the fundamental models that describe plasma turbulence. The model also appears as a simplified reduced Rayleigh-B\'enard convection model. The mathematical analysis the Hasegawa-Mima equation is challenging due to the absence of any smoothing viscous terms, as well as to the presence of an analogue of the vortex stretching terms. In this paper, we introduce and study a model which is inspired by the inviscid Hasegawa-Mima model, which we call a pseudo-Hasegawa-Mima model. The introduced model is easier to investigate analytically than the original inviscid Hasegawa-Mima model, as it has a nicer mathematical structure. The resemblance between this model and the Euler equations of inviscid incompressible fluids inspired us to adapt the techniques and ideas introduced for the two-dimensional and the three-dimensional Euler equations to prove the global existence and uniqueness of solutions for our model. Moreover, we prove the continuous dependence on initial data of solutions for the pseudo-Hasegawa-Mima model. These are the first results on existence and uniqueness of solutions for a model that is related to the three-dimensional inviscid Hasegawa-Mima equations

    Some remarks on a Hasegawa-Mima-Charney-Obukhov equation

    Full text link

    BILAN D'ACTIVITE DE L'HOSPITALISATION DU CENTRE ANTIPOISON DE MARSEILLE EN 1999

    Full text link
    AIX-MARSEILLE2-BU Méd/Odontol. (130552103) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF

    Numerical comparisons of two long-wave limit models

    Get PDF
    The Benney-Luke equation (BL) is a model for the evolution of three-dimensional weakly nonlinear, long water waves of small amplitude. In this paper we propose a nearly conservative scheme for the numerical resolution of (BL). Moreover, it is known (Paumond, Differential Integral Equations 16 (2003) 1039–1064; Pego and Quintero, Physica D 132 (1999) 476–496) that (BL) is linked to the Kadomtsev-Petviashvili equation for almost one-dimensional waves propagating in one direction. We study here numerically the link between (KP) and (BL) and we point out the coupling effects emerging by considering two solitary waves propagating in two opposite directions
    corecore