1,059 research outputs found

    Matching games: the least core and the nucleolus

    Get PDF
    A matching game is a cooperative game defined by a graph G=(V,E)G=(V,E). The player set is VV and the value of a coalition SVS \subseteq V is defined as the size of a maximum matching in the subgraph induced by SS. We show that the nucleolus of such games can be computed efficiently. The result is based on an alternative characterization of the least core which may be of independent interest. The general case of weighted matching games remains unsolved. \u

    Two extensions of the Shapley value for cooperative games

    Get PDF
    Two extensions of the Shapley value are given. First we consider a probabilistic framework in which certain consistent allocation rules such as the Shapley value are characterized. The second generalization of the Shapley value is an extension to the structure of posets by means of a recursive form. In the latter setting, the Shapley value for quasi-concave games is shown to be a core-allocation. \u

    The generalized sports competition problem

    Get PDF
    Consider a sports competition among various teams playing against each other in pairs (matches) according to a previously determined schedule. At some stage of the competition one may ask whether a particular team still has a (theoretical) chance to win the competition. The computational complexity of this question depends on the way scores are allocated according to the outcome of a match. For competitions with at most 33 different outcomes of a match the complexity is already known. In practice there are many competitions in which more than 33 outcomes are possible. We determine the complexity of the above problem for competitions with an arbitrary number of different outcomes. Our model also includes competitions that are asymmetric in the sense that away playing teams possibly receive other scores than home playing teams. \u

    The new FIFA rules are hard: Complexity aspects of sports competitions

    Get PDF
    Consider a soccer competition among various teams playing against each other in pairs (matches) according to a previously determined schedule. At some stage of the competition one may ask whether a particular team still has a (theoretical) chance to win the competition. The complexity of this question depends on the way scores are allocated according to the outcome of a match. For example, the problem is polynomially solvable for the ancient FIFA rules (2:0 resp. 1:1) but becomes NP-hard if the new rules (3:0 resp. 1:1) are applied. We determine the complexity of the above problem for all possible score allocation rules. \u
    corecore