8 research outputs found

    C25-modified rifamycin derivatives with improved activity against Mycobacterium abscessus.

    Full text link
    Infections caused by Mycobacterium abscessus are difficult to treat due to its intrinsic resistance to most antibiotics. Formation of biofilms and the capacity of M. abscessus to survive inside host phagocytes further complicate eradication. Herein, we explored whether addition of a carbamate-linked group at the C25 position of rifamycin SV blocks enzymatic inactivation by ArrMab, an ADP-ribosyltransferase conferring resistance to rifampicin (RMP). Unlike RMP, 5j, a benzyl piperidine rifamycin derivative with a morpholino substituted C3 position and a naphthoquinone core, is not modified by purified ArrMab. Additionally, we show that the ArrMab D82 residue is essential for catalytic activity. Thermal profiling of ArrMab in the presence of 5j, RMP, or rifabutin shows that 5j does not bind to ArrMab. We found that the activity of 5j is comparable to amikacin against M. abscessus planktonic cultures and pellicles. Critically, 5j also exerts potent antimicrobial activity against M. abscessus in human macrophages and shows synergistic activity with amikacin and azithromycin

    Cathelicidin and PMB neutralize endotoxins by multifactorial mechanisms including LPS interaction and targeting of host cell membranes

    No full text
    Antimicrobial peptides (AMPs) contribute to an effective protection against infections. The antibacterial function of AMPs depends on their interactions with microbial membranes and lipids, such as lipopolysaccharide (LPS; endotoxin). Hyperinflammation induced by endotoxin is a key factor in bacterial sepsis and many other human diseases. Here, we provide a comprehensive profile of peptide-mediated LPS neutralization by systematic analysis of the effects of a set of AMPs and the peptide antibiotic polymyxin B (PMB) on the physicochemistry of endotoxin, macrophage activation, and lethality in mice. Mechanistic studies revealed that the host defense peptide LL-32 and PMB each reduce LPS-mediated activation also via a direct interaction of the peptides with the host cell. As a biophysical basis, we demonstrate modifications of the structure of cholesterol-rich membrane domains and the association of glycosylphosphatidylinositol (GPI)-anchored proteins. Our discovery of a host cell-directed mechanism of immune control contributes an important aspect in the development and therapeutic use of AMPs

    The antimicrobial peptide cathelicidin and polymyxin B neutralize endotoxins by a multifactorial mechanism including not only direct LPS-interaction but also targeting of host cell membrane domains

    No full text
    Antimicrobial peptides (AMPs) contribute to an effective protection against infections. The antibacterial function of AMPs depends on their interactions with microbial membranes and lipids, such as lipopolysaccharide (LPS; endotoxin). Hyperinflammation induced by endotoxin is a key factor in bacterial sepsis and many other human diseases. Here, we provide a comprehensive profile of peptide-mediated LPS neutralization by systematic analysis of the effects of a set of AMPs and the peptide antibiotic polymyxin B (PMB) on the physicochemistry of endotoxin, macrophage activation, and lethality in mice. Mechanistic studies revealed that the host defense peptide LL-32 and PMB each reduce LPS-mediated activation also via a direct interaction of the peptides with the host cell. As a biophysical basis, we demonstrate modifications of the structure of cholesterol-rich membrane domains and the association of glycosylphosphatidylinositol (GPI)-anchored proteins. Our discovery of a host cell-directed mechanism of immune control contributes an important aspect in the development and therapeutic use of AMPs

    Ezetimibe added to statin therapy after acute coronary syndromes

    Get PDF
    BACKGROUND: Statin therapy reduces low-density lipoprotein (LDL) cholesterol levels and the risk of cardiovascular events, but whether the addition of ezetimibe, a nonstatin drug that reduces intestinal cholesterol absorption, can reduce the rate of cardiovascular events further is not known. METHODS: We conducted a double-blind, randomized trial involving 18,144 patients who had been hospitalized for an acute coronary syndrome within the preceding 10 days and had LDL cholesterol levels of 50 to 100 mg per deciliter (1.3 to 2.6 mmol per liter) if they were receiving lipid-lowering therapy or 50 to 125 mg per deciliter (1.3 to 3.2 mmol per liter) if they were not receiving lipid-lowering therapy. The combination of simvastatin (40 mg) and ezetimibe (10 mg) (simvastatin-ezetimibe) was compared with simvastatin (40 mg) and placebo (simvastatin monotherapy). The primary end point was a composite of cardiovascular death, nonfatal myocardial infarction, unstable angina requiring rehospitalization, coronary revascularization ( 6530 days after randomization), or nonfatal stroke. The median follow-up was 6 years. RESULTS: The median time-weighted average LDL cholesterol level during the study was 53.7 mg per deciliter (1.4 mmol per liter) in the simvastatin-ezetimibe group, as compared with 69.5 mg per deciliter (1.8 mmol per liter) in the simvastatin-monotherapy group (P<0.001). The Kaplan-Meier event rate for the primary end point at 7 years was 32.7% in the simvastatin-ezetimibe group, as compared with 34.7% in the simvastatin-monotherapy group (absolute risk difference, 2.0 percentage points; hazard ratio, 0.936; 95% confidence interval, 0.89 to 0.99; P = 0.016). Rates of pre-specified muscle, gallbladder, and hepatic adverse effects and cancer were similar in the two groups. CONCLUSIONS: When added to statin therapy, ezetimibe resulted in incremental lowering of LDL cholesterol levels and improved cardiovascular outcomes. Moreover, lowering LDL cholesterol to levels below previous targets provided additional benefit
    corecore