403 research outputs found

    Prefrontal and Motor Planning Cortical Activity during Stepping Tasks Is Related to Task Complexity but Not Concern about Falling in Older People: A fNIRS Study

    Full text link
    This study investigated the effect of concern about falling on neural efficiency during stepping in older people. Community-dwellers aged >65 years were categorised as having low (n = 71) and high (n = 28) concerns about falling based on the Iconographical Falls Efficacy Scale (IconFES 10-item, scores <19 and ≥19, respectively). Participants performed a choice stepping reaction time test (CSRT), an inhibitory CSRT (iCSRT), and a Stroop stepping test (SST)) on a computerised step mat. Cortical activity was recorded using functional near-infrared spectroscopy. There were no significant differences in stepping response times or cortical activity in the dorsolateral prefrontal cortex (DLPFC), supplementary motor area (SMA), and premotor cortex (PMC) between those with and without concern about falling. However, stepping response times and cortical activity in the PFC, SMA, and PMC were significantly higher in the SST compared with the CSRT in the whole sample. PMC activity was also higher in the SST compared to the iCSRT. These findings demonstrate that cortical activity is higher in cognitively demanding stepping tasks that require selective attention and inhibition in healthy older people. The lack of association between concern about falling and neural efficiency during stepping in this older sample may reflect their only moderate scores on the IconFES

    Cognitive and Motor Cortical Activity During Cognitively Demanding Stepping Tasks in Older People at Low and High Risk of Falling

    Full text link
    Background: Choice stepping reaction time tasks are underpinned by neuropsychological, sensorimotor, and balance systems and therefore offer good indices of fall risk and physical and cognitive frailty. However, little is known of the neural mechanisms for impaired stepping and associated fall risk in older people. We investigated cognitive and motor cortical activity during cognitively demanding stepping reaction time tasks using functional near-infrared spectroscopy (fNIRS) in older people at low and high fall risk. Methods: Ninety-five older adults [mean (SD) 71.4 (4.9) years, 23 men] were categorized as low or high fall risk [based on 12-month fall history (≥2 falls) and/or Physiological Profile Assessment fall risk score ≥1]. Participants performed a choice stepping reaction time test and a more cognitively demanding Stroop stepping task on a computerized step mat. Cortical activity in cognitive [dorsolateral prefrontal cortex (DLPFC)] and motor (supplementary motor area and premotor cortex) regions was recorded using fNIRS. Stepping performance and cortical activity were contrasted between the groups and between the choice and Stroop stepping conditions. Results: Compared with the low fall risk group (n = 71), the high fall risk group (n = 24) exhibited significantly greater DLPFC activity and increased intra-individual variability in stepping response time during the Stroop stepping task. The high fall risk group DLPFC activity was greater during the performance of Stroop stepping task in comparison with choice stepping reaction time. Regardless of group, the Stroop stepping task elicited increased cortical activity in the supplementary motor area and premotor cortex together with increased mean and intra-individual variability of stepping response times. Conclusions: Older people at high fall risk exhibited increased DLPFC activity and stepping response time variability when completing a cognitively demanding stepping test compared with those at low fall risk and to a simpler choice-stepping reaction time test. This increased hemodynamic response might comprise a compensatory process for postural control deficits and/or reflect a degree of DLPFC neural inefficiency in people with increased fall risk

    Mitochondrial phylogeography and demographic history of the Vicuña: implications for conservation

    Get PDF
    The vicuña (Vicugna vicugna; Miller, 1924) is a conservation success story, having recovered from near extinction in the 1960s to current population levels estimated at 275 000. However, lack of information about its demographic history and genetic diversity has limited both our understanding of its recovery and the development of science-based conservation measures. To examine the evolution and recent demographic history of the vicuña across its current range and to assess its genetic variation and population structure, we sequenced mitochondrial DNA from the control region (CR) for 261 individuals from 29 populations across Peru, Chile and Argentina. Our results suggest that populations currently designated as Vicugna vicugna vicugna and Vicugna vicugna mensalis comprise separate mitochondrial lineages. The current population distribution appears to be the result of a recent demographic expansion associated with the last major glacial event of the Pleistocene in the northern (18 to 22°S) dry Andes 14–12 000 years ago and the establishment of an extremely arid belt known as the 'Dry Diagonal' to 29°S. Within the Dry Diagonal, small populations of V. v. vicugna appear to have survived showing the genetic signature of demographic isolation, whereas to the north V. v. mensalis populations underwent a rapid demographic expansion before recent anthropogenic impacts

    Merging Resource Availability with Isotope Mixing Models: The Role of Neutral Interaction Assumptions

    Get PDF
    Background: Bayesian mixing models have allowed for the inclusion of uncertainty and prior information in the analysis of trophic interactions using stable isotopes. Formulating prior distributions is relatively straightforward when incorporating dietary data. However, the use of data that are related, but not directly proportional, to diet (such as prey availability data) is often problematic because such information is not necessarily predictive of diet, and the information required to build a reliable prior distribution for all prey species is often unavailable. Omitting prey availability data impacts the estimation of a predator's diet and introduces the strong assumption of consumer ultrageneralism (where all prey are consumed in equal proportions), particularly when multiple prey have similar isotope values. Methodology: We develop a procedure to incorporate prey availability data into Bayesian mixing models conditional on the similarity of isotope values between two prey. If a pair of prey have similar isotope values (resulting in highly uncertain mixing model results), our model increases the weight of availability data in estimating the contribution of prey to a predator's diet. We test the utility of this method in an intertidal community against independently measured feeding rates. Conclusions: Our results indicate that our weighting procedure increases the accuracy by which consumer diets can be inferred in situations where multiple prey have similar isotope values. This suggests that the exchange of formalism for predictive power is merited, particularly when the relationship between prey availability and a predator's diet cannot be assumed for all species in a system.National Science Foundation (NSF) [DEB-0608178]U.S. Environmental Protection AgencyDepartment of EducationSigma XiUniversity of ChicagoFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)(CAPES) Coordenacao de Aperfeicoamento de Pessoal de Nivel Superiori

    Mass Spectrometry-Based (GeLC-MS/MS) Comparative Proteomic Analysis of Endoscopically (ePFT) Collected Pancreatic and Gastroduodenal Fluids

    Get PDF
    Objectives: The secretin-stimulated endoscopic pancreatic function test (ePFT) allows for the safe collection of gastroduodenal and pancreatic fluid from the duodenum. We test the hypothesis that these endoscopically collected fluids have different proteomes. As such, we aim to show that the ePFT method can be used to collect fluid enriched in pancreatic proteins to test for pancreatic function. Methods: Gastroduodenal and pancreatic fluid were collected sequentially from chronic pancreatitis patients undergoing an ePFT. Proteins from each fluid type were extracted using previously published optimized methods and subjected to GeLC-MS/MS analysis for protein identification and bioinformatics analysis. Results: Mass spectrometry analysis identified proteins that were exclusive in either gastroduodenal (46) or pancreatic fluid (234). Subsequent quantitative analysis revealed proteins that were differentially abundant with statistical significance. As expected, proteolytic enzymes and protease inhibitors were among the differentially detected proteins. The proteases pepsinogens and gastrin were enriched in gastroduodenal fluid, while common pancreatic enzymes (e.g., aminopeptidase N, chymotrypsin C, elastase-3A, trypsin, and carboxypeptidase A1, and elastase 2B) were found in greater abundance in pancreatic fluid. Similarly for protease inhibitors, members of the cystatin family were exclusive to gastroduodenal fluid, while serpins A11, B4, and D1 were exclusive to pancreatic fluid. Conclusions: We have shown that ePFT collection coupled with mass spectrometry can be used to identify differentially detected proteins in gastroduodenal and pancreatic fluids. The data obtained using GeLC-MS/MS techniques provide further evidence supporting the feasibility of using ePFT-collected fluid to study specific diseases of the upper gastrointestinal tract, such as chronic pancreatitis

    Temporal changes in HCV genotype distribution in three different high risk populations in San Francisco, California

    Get PDF
    Abstract Background Hepatitis C virus (HCV) genotype (GT) has become an important measure in the diagnosis and monitoring of HCV infection treatment. In the United States (U.S.) HCV GT 1 is reported as the most common infecting GT among chronically infected patients. In Europe, however, recent studies have suggested that the epidemiology of HCV GTs is changing. Methods We assessed HCV GT distribution in 460 patients from three HCV-infected high risk populations in San Francisco, and examined patterns by birth cohort to assess temporal trends. Multiple logistic regression was used to assess factors independently associated with GT 1 infection compared to other GTs (2, 3, and 4). Results Overall, GT 1 was predominant (72.4%), however younger injection drug users (IDU) had a lower proportion of GT 1 infections (54.7%) compared to older IDU and HIV-infected patients (80.5% and 76.6%, respectively). Analysis by birth cohort showed increasing proportions of non-GT 1 infections associated with year of birth: birth before 1970 was independently associated with higher adjusted odds of GT 1: AOR 2.03 (95% CI: 1.23, 3.34). African-Americans as compared to whites also had higher adjusted odds of GT 1 infection (AOR: 3.37; 95% CI: 1.89, 5.99). Conclusions Although, HCV GT 1 remains the most prevalent GT, especially among older groups, changes in GT distribution could have significant implications for how HCV might be controlled on a population level and treated on an individual level
    corecore