182 research outputs found

    Perfluorinated Compounds May Lower Vaccine Protection in Children

    Get PDF

    Constraint-Adaptive MPC for linear systems: A system-theoretic framework for speeding up MPC through online constraint removal

    Get PDF
    Reducing the computation time of model predictive control (MPC) is important, especially for systems constrained by many state constraints. In this paper, we propose a new online constraint removal framework for linear systems, for which we coin the term constraint-adaptive MPC (ca-MPC). In so-called exact ca-MPC, we adapt the imposed constraints by removing, at each time-step, a subset of the state constraints in order to reduce the computational complexity of the receding-horizon optimal control problem, while ensuring that the closed-loop behavior is {\em identical} to that of the original MPC law. We also propose an approximate ca-MPC scheme in which a further reduction of computation time can be accomplished by a tradeoff with closed-loop performance, while still preserving recursive feasibility, stability, and constraint satisfaction properties. The online constraint removal exploits fast backward and forward reachability computations combined with optimality properties

    Recent technological advancements in radiofrequency- andmicrowave-mediated hyperthermia for enhancing drug delivery

    Get PDF
    Hyperthermia therapy is a potent enhancer of chemotherapy and radiotherapy. In particular, microwave (MW) and radiofrequency (RF) hyperthermia devices provide a variety of heating approaches that can treat most cancers regardless the size. This review introduces the physics of MW/RF hyperthermia, the current state-of-the-art systems for both localized and regional heating, and recent advancements in hyperthermia treatment guidance using real-time computational simulations and magnetic resonance thermometry. Clinical trials involving RF/MW hyperthermia as adjuvant for chemotherapy are also presented per anatomical site. These studies favor the use of adjuvant hyperthermia since it significantly improves curative and palliative clinical outcomes. The main challenge of hyperthermia is the distribution of state-of-the-art heating systems. Nevertheless, we anticipate that recent technology advances will expand the use of hyperthermia to chemotherapy centers for enhanced drug delivery. These new technologies hold great promise not only for (image-guided) perfusion modulation and sensitization for cytotoxic drugs, but also for local delivery of various compounds using thermosensitive liposomes

    Power from the people - Human-powered small-scale generation system for a sustainable dance club

    Get PDF
    Most Human-Powered Energy-Harvesting Systems are used to power ubiquitously deployed sensor networks and mobile electronics. These systems scavenge power from human activity or derive limited energy from ambient heat, light, or vibrations. In this article, systems that use human power by walking or running are analyzed, where an alternative system has been designed and implemented that generates energy from people dancing in a club environment

    The influence of the inverter switching frequency on rotor losses in high-speed permanent magnet machines : an experimental study

    Get PDF
    Harmonic content of the output voltage of pulse width modulated voltage source inverters (PWM VSI) is determined by the switching frequency. On the other hand, rotor losses in high-speed permanent magnet (PM) machines are caused, among other factors, by harmonics in stator currents. These harmonics are determined by the harmonics in the inverter output voltage, and therefore dependent on the switching frequency. In high-speed PM machines, due to the high fundamental frequency, harmonics in the stator currents caused by PWM are located at very high frequencies. Measurement of rotor losses caused by these harmonics in a structure with a conductive retaining sleeve on the rotor which is prone to eddy currents might be very challenging. This paper investigates issues related to this measurement and presents a measurement method which results are compared with results from a 2D analytical model that takes into account eddy currents in the rotor.</p

    Analysis and design of a slotless tubular permanent magnet actuator for high acceleration applications

    Get PDF
    This paper presents the design of a linear actuator for high acceleration applications. In the analysis, a slotless tubular permanent magnet actuator is modeled by means of semianalytical field solutions. Several slotless topologies are modeled and compared to achieve the highest acceleration. A design has been proposed and built, and measurements are conducted to verify the model

    Intrasubject multimodal groupwise registration with the conditional template entropy

    Get PDF
    Image registration is an important task in medical image analysis. Whereas most methods are designed for the registration of two images (pairwise registration), there is an increasing interest in simultaneously aligning more than two images using groupwise registration. Multimodal registration in a groupwise setting remains difficult, due to the lack of generally applicable similarity metrics. In this work, a novel similarity metric for such groupwise registration problems is proposed. The metric calculates the sum of the conditional entropy between each image in the group and a representative template image constructed iteratively using principal component analysis. The proposed metric is validated in extensive experiments on synthetic and intrasubject clinical image data. These experiments showed equivalent or improved registration accuracy compared to other state-of-the-art (dis)similarity metrics and improved transformation consistency compared to pairwise mutual information

    Thermal dosimetry for bladder hyperthermia treatment. An overview.

    Get PDF
    The urinary bladder is a fluid-filled organ. This makes, on the one hand, the internal surface of the bladder wall relatively easy to heat and ensures in most cases a relatively homogeneous temperature distribution; on the other hand the variable volume, organ motion, and moving fluid cause artefacts for most non-invasive thermometry methods, and require additional efforts in planning accurate thermal treatment of bladder cancer. We give an overview of the thermometry methods currently used and investigated for hyperthermia treatments of bladder cancer, and discuss their advantages and disadvantages within the context of the specific disease (muscle-invasive or non-muscle-invasive bladder cancer) and the heating technique used. The role of treatment simulation to determine the thermal dose delivered is also discussed. Generally speaking, invasive measurement methods are more accurate than non-invasive methods, but provide more limited spatial information; therefore, a combination of both is desirable, preferably supplemented by simulations. Current efforts at research and clinical centres continue to improve non-invasive thermometry methods and the reliability of treatment planning and control software. Due to the challenges in measuring temperature across the non-stationary bladder wall and surrounding tissues, more research is needed to increase our knowledge about the penetration depth and typical heating pattern of the various hyperthermia devices, in order to further improve treatments. The ability to better determine the delivered thermal dose will enable clinicians to investigate the optimal treatment parameters, and consequentially, to give better controlled, thus even more reliable and effective, thermal treatments

    Assessment of the thermal tissue models for the head and neck hyperthermia treatment planning

    Get PDF
    Purpose: To compare different thermal tissue models for head and neck hyperthermia treatment planning, and to assess the results using predicted and measured applied power data from clinical treatments. Methods: Three commonly used temperature models from literature were analysed: ā€œconstant baselineā€, ā€œconstant thermal stressā€ and ā€œtemperature dependentā€. Power and phase data of 93 treatments of 20 head and neck patients treated with the HYPERcollar3D applicator were used. The impact on predicted median temperature T50 inside the target region was analysed with maximum allowed temperature of 44 Ā°C in healthy tissue. The robustness of predicted T50 for the three models against the influence of blood perfusion, thermal conductivity and the assumed hotspot temperature level was analysed. Results: We found an average predicted T50 of 41.0 Ā± 1.3 Ā°C (constant baseline model), 39.9 Ā± 1.1 Ā°C (constant thermal stress model) and 41.7 Ā± 1.1 Ā°C (temperature dependent model). The constant thermal stress model resulted in the best agreement between the predicted power (P = 132.7 Ā± 45.9 W) and the average power measured during the hyperthermia treatments (P = 129.1 Ā± 83.0 W). Conclusion: The temperature dependent model predicts an unrealistically high T50. The power values for the constant thermal stress model, after scaling simulated maximum temperatures to 44 Ā°C, matched best to the average measured powers. We consider this model to be the most appropriate for temperature predictions using the HYPERcollar3D applicator, however further studies are necessary for developing of robust temperature model for tissues during heat stress.</p

    ESHO benchmarks for computational modeling and optimization in hyperthermia therapy

    Get PDF
    Background: The success of cancer hyperthermia (HT) treatments is strongly dependent on the temperatures achieved in the tumor and healthy tissues as it correlates with treatment efficacy and safety, respectively. Hyperthermia treatment planning (HTP) simulations have become pivotal for treatment optimization due to the possibility for pretreatment planning, optimization and decision making, as well as real-time treatment guidance. Materials and methods: The same computational methods deployed in HTP are also used for in silico studies. These are of great relevance for the development of new HT devices and treatment approaches. To aid this work, 3 D patient models have been recently developed and made available for the HT community. Unfortunately, there is no consensus regarding tissue properties, simulation settings, and benchmark applicators, which significantly influence the clinical relevance of computational outcomes. Results and discussion: Herein, we propose a comprehensive set of applicator benchmarks, efficacy and safety optimization algorithms, simulation settings and clinical parameters, to establish benchmarks for method comparison and code verification, to provide guidance, and in view of the 2021 ESHO Grand Challenge (Details on the ESHO grand challenge on HTP will be provided at https://www.esho.info/). Conclusion: We aim to establish guidelines to promote standardization within the hyperthermia community such that novel approaches can quickly prove their benefit as quickly as possible in clinically relevant simulation scenarios. This paper is primarily focused on radiofrequency and microwave hyperthermia but, since 3 D simulation studies on heating with ultrasound are now a reality, guidance as well as a benchmark for ultrasound-based hyperthermia are also included
    • ā€¦
    corecore