155 research outputs found

    Substantial large-scale feedbacks between natural aerosols and climate

    Get PDF
    The terrestrial biosphere is an important source of natural aerosol. Natural aerosol sources alter climate, but are also strongly controlled by climate, leading to the potential for natural aerosol-climate feedbacks. Here we use a global aerosol model to make an assessment of terrestrial natural aerosol-climate feedbacks, constrained by observations of aerosol number. We find that warmer-than-average temperatures are associated with higher-than-average number concentrations of large (>100 nm diameter) particles, particularly during the summer. This relationship is well reproduced by the model and is driven by both meteorological variability and variability in natural aerosol from biogenic and landscape fire sources. We find that the calculated extratropical annual mean aerosol radiative effect (both direct and indirect) is negatively related to the observed global temperature anomaly, and is driven by a positive relationship between temperature and the emission of natural aerosol. The extratropical aerosol-climate feedback is estimated to be -0.14 W m(-2) K-1 for landscape fire aerosol, greater than the -0.03 W m(-2) K-1 estimated for biogenic secondary organic aerosol. These feedbacks are comparable in magnitude to other biogeochemical feedbacks, highlighting the need for natural aerosol feedbacks to be included in climate simulations.Peer reviewe

    Systems metabolic engineering of Corynebacterium glutamicum eliminates all by-products for selective and high-yield production of the platform chemical 5-aminovalerate

    Get PDF
    5-aminovalerate (AVA) is a platform chemical of substantial commercial value to derive nylon-5 and five-carbon derivatives like Ύ-valerolactam, 1,5-pentanediol, glutarate, and 5-hydroxyvalerate. Denovo bio-production synthesis of AVA using metabolically engineered cell factories is regarded as exemplary route to provide this chemical in a sustainable way. So far, this route is limited by low titers, rates and yields and suffers from high levels of by-products. To overcome these limitations, we developed a novel family of AVA producing C. glutamicum cell factories. Stepwise optimization included (i) improved AVA biosynthesis by expression balancing of the heterologous davBA genes from P. putida, (ii) reduced formation of the by-product glutarate by disruption of the catabolic y-aminobutyrate pathway (iii), increased AVA export, and (iv) reduced AVA re-import via native and heterologous transporters to account for the accumulation of intracellular AVA up to 300 mM. Strain C. glutamicum AVA-5A, obtained after several optimization rounds, produced 48.3 g L-1 AVA in a fed-batch process and achieved a high yield of 0.21 g g-1. Surprisingly in later stages, the mutant suddenly accumulated glutarate to an extent equivalent to 30% of the amount of AVA formed, tenfold more than in the early process, displaying a severe drawback toward industrial production. Further exploration led to the discovery that ArgD, naturally aminating N-acetyl-l-ornithine during l-arginine biosynthesis, exhibits deaminating side activity on AVA towards glutarate formation. This promiscuity became relevant because of the high intracellular AVA level and the fact that ArgD became unoccupied with the gradually stronger switch-off of anabolism during production. Glutarate formation was favorably abolished in the advanced strains AVA-6A, AVA-6B, and AVA-7, all lacking argD. In a fed-batch process, C. glutamicum AVA-7 produced 46.5 g L-1 AVA at a yield of 0.34 g g-1 and a maximum productivity of 1.52 g L-1 h-1, outperforming all previously reported efforts and stetting a milestone toward industrial manufacturing of AVA. Notably, the novel cell factories are fully genome-based, offering high genetic stability and requiring no selection markers

    Commentary: Research Recommendations for Understanding the Decline of American Kestrels (\u3cem\u3eFalco sparverius\u3c/em\u3e) Across Much of North America

    Get PDF
    Across much of North America, populations of American Kestrels (Falco sparverius) have been in decline for decades (Farmer et al. 2008, Farmer and Smith 2009, Smallwood et al. 2009a, Paprocki et al. 2014, Sauer et al. 2014). Hypothesized causes of kestrel declines include predation by Cooper\u27s Hawks (Accipiter cooperii; Farmer et al. 2008), pathogens (e.g., Nemeth et al. 2006), habitat loss (Sullivan and Wood 2005, Farmer et al. 2008, Bolgiano et al. 2015), pesticides (Smallwood et al. 2009a, Rattner et al. 2015), and climate change (Steenhof and Peterson 2009b), yet no hypothesized factor has been supported empirically (Farmer et al. 2006, Smallwood et al. 2009a). Despite the effort spent evaluating threats, the lack of a “smoking-gun” to explain the decline of this charismatic species has led many professional and citizen scientists to call for action on several unlikely, and unsupported, threats. Here, we evaluate and build on hypothesized causes of declines considered by other authors (e.g., Sullivan and Wood 2005, Farmer et al. 2008, Smallwood et al. 2009a) to synthesize conclusions and articulate research needs

    Commensal Microbes and Hair Follicle Morphogenesis Coordinately Drive Treg Migration into Neonatal Skin

    Get PDF
    Regulatory T cells (Tregs) are required to establish immune tolerance to commensal microbes. Tregs accumulate abruptly in the skin during a defined window of postnatal tissue development. However, the mechanisms mediating Treg migration to neonatal skin are unknown. Here we show that hair follicle (HF) development facilitates the accumulation of Tregs in neonatal skin and that upon skin entry these cells localize to HFs, a primary reservoir for skin commensals. Further, germ-free neonates had reduced skin Tregs indicating that commensal microbes augment Treg accumulation. We identified Ccl20 as a HF-derived, microbiota-dependent chemokine and found its receptor, Ccr6, to be preferentially expressed by Tregs in neonatal skin. The Ccl20-Ccr6 pathway mediated Treg migration in vitro and in vivo. Thus, HF morphogenesis, commensal microbe colonization, and local chemokine production work in concert to recruit Tregs into neonatal skin, thereby establishing this tissue Treg niche early in life

    Does the Relationship between Age and Brain Structure Differ in Youth with Conduct Disorder?

    Get PDF
    Conduct disorder (CD) is characterised by persistent antisocial and aggressive behaviour and typically emerges in childhood or adolescence. Although several authors have proposed that CD is a neurodevelopmental disorder, very little evidence is available about brain development in this condition. Structural brain alterations have been observed in CD, and some indirect evidence for delayed brain maturation has been reported. However, no detailed analysis of age-related changes in brain structure in youth with CD has been conducted. Using cross-sectional MRI data, this study aimed to explore differences in brain maturation in youth with CD versus healthy controls to provide further understanding of the neurodevelopmental processes underlying CD. 291 CD cases (153 males) and 379 healthy controls (160 males) aged 9–18 years (Mage = 14.4) were selected from the European multisite FemNAT-CD study. Structural MRI scans were analysed using surface-based morphometry followed by application of the ENIGMA quality control protocols. An atlas-based approach was used to investigate group differences and test for group-by-age and group-by-age-by-sex interactions in cortical thickness, surface area and subcortical volumes. Relative to healthy controls, the CD group showed lower surface area across frontal, temporal and parietal regions as well as lower total surface area. No significant group-by-age or group-by-age-by-sex interactions were observed on any brain structure measure. These findings suggest that CD is associated with lower surface area across multiple cortical regions, but do not support the idea that CD is associated with delayed brain maturation, at least within the age bracket considered here.</p

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Investigating Sex Differences in Emotion Recognition, Learning, and Regulation among Youths with Conduct Disorder

    Get PDF
    Objective: Conduct disorder (CD) is a serious neurodevelopmental disorder marked by notably higher prevalence rates for boys than girls. Converging evidence suggests that CD is associated with impairments in emotion recognition, learning, and regulation. However, it is not known whether there are sex differences in the relationship between CD and emotion dysfunction. Prior studies on emotion functioning in CD have so far been underpowered for investigating sex differences. Therefore, our primary aim was to characterize emotion processing skills in a large sample of girls and boys with CD compared to typically developing controls (TDCs) using a comprehensive neuropsychological test battery. Method: We included 542 youths with CD (317 girls) and 710 TDCs (479 girls), 9 to 18 years of age, from a European multisite study (FemNAT-CD). Participants completed three experimental tasks assessing emotion recognition, learning, and regulation, respectively. Data were analyzed to test for effects of group and sex, and group-by-sex interactions, while controlling for potentially confounding factors. Results: Relative to TDCs, youths with CD showed impaired emotion recognition (that was related to more physical and proactive aggression, and higher CU traits), emotional learning (specifically from punishment), and emotion regulation. Boys and girls with CD, however, displayed similar impairments in emotion processing. Conclusion: This study provides compelling evidence for a relationship between CD and deficient neurocognitive functioning across three emotional domains that have previously been linked to CD etiology. However, there was no support for sex-specific profiles of emotion dysfunction, suggesting that current neurocognitive models of CD apply equally to both sexes.</p

    Inhibition of FGF receptor blocks adaptive resistance to RET inhibition in CCDC6-RET-rearranged thyroid cancer.

    Get PDF
    Genetic alterations in RET lead to activation of ERK and AKT signaling and are associated with hereditary and sporadic thyroid cancer and lung cancer. Highly selective RET inhibitors have recently entered clinical use after demonstrating efficacy in treating patients with diverse tumor types harboring RET gene rearrangements or activating mutations. In order to understand resistance mechanisms arising after treatment with RET inhibitors, we performed a comprehensive molecular and genomic analysis of a patient with RET-rearranged thyroid cancer. Using a combination of drug screening and proteomic and biochemical profiling, we identified an adaptive resistance to RET inhibitors that reactivates ERK signaling within hours of drug exposure. We found that activation of FGFR signaling is a mechanism of adaptive resistance to RET inhibitors that activates ERK signaling. Combined inhibition of FGFR and RET prevented the development of adaptive resistance to RET inhibitors, reduced cell viability, and decreased tumor growth in cellular and animal models of CCDC6-RET-rearranged thyroid cancer
    • 

    corecore