49 research outputs found

    Does native Trypanosoma cruzi calreticulin mediate growth inhibition of a mammary tumor during infection?

    Get PDF
    Indexación: Web of Science.Background: For several decades now an antagonism between Trypanosoma cruzi infection and tumor development has been detected. The molecular basis of this phenomenon remained basically unknown until our proposal that T. cruzi Calreticulin (TcCRT), an endoplasmic reticulum-resident chaperone, translocated-externalized by the parasite, may mediate at least an important part of this effect. Thus, recombinant TcCRT (rTcCRT) has important in vivo antiangiogenic and antitumor activities. However, the relevant question whether the in vivo antitumor effect of T. cruzi infection is indeed mediated by the native chaperone (nTcCRT), remains open. Herein, by using specific modified anti-rTcCRT antibodies (Abs), we have neutralized the antitumor activity of T. cruzi infection and extracts thereof, thus identifying nTcCRT as a valid mediator of this effect. Methods: Polyclonal anti-rTcCRT F(ab')(2) Ab fragments were used to reverse the capacity of rTcCRT to inhibit EAhy926 endothelial cell (EC) proliferation, as detected by BrdU uptake. Using these F(ab')(2) fragments, we also challenged the capacity of nTcCRT, during T. cruzi infection, to inhibit the growth of an aggressive mammary adenocarcinoma cell line (TA3-MTXR) in mice. Moreover, we determined the capacity of anti-rTcCRT Abs to reverse the antitumor effect of an epimastigote extract (EE). Finally, the effects of these treatments on tumor histology were evaluated. Results: The rTcCRT capacity to inhibit ECs proliferation was reversed by anti-rTcCRT F(ab')(2) Ab fragments, thus defining them as valid probes to interfere in vivo with this important TcCRT function. Consequently, during infection, these Ab fragments also reversed the in vivo experimental mammary tumor growth. Moreover, anti-rTcCRT Abs also neutralized the antitumor effect of an EE, again identifying the chaperone protein as an important mediator of this anti mammary tumor effect. Finally, as determined by conventional histological parameters, in infected animals and in those treated with EE, less invasive tumors were observed while, as expected, treatment with F(ab')(2) Ab fragments increased malignancy. Conclusion: We have identified translocated/externalized nTcCRT as responsible for at least an important part of the anti mammary tumor effect of the chaperone observed during experimental infections with T. cruzi.http://bmccancer.biomedcentral.com/articles/10.1186/s12885-016-2764-

    Ototoxicity of cisplatin plus standard radiation therapy vs. accelerated radiation therapy in glioblastoma patients

    Full text link
    Purpose : To assess the effect of cisplatin (CDDP) plus concurrent radiation therapy on hearing loss. Methods : 451 patients with glioblastoma multiforme (GBM) were randomly assigned after surgery to: Arm A: Carmustine (BCNU) + standard radiation therapy (SRT); Arm B: BCNU + accelerated radiation therapy (ART: 160 cGy twice daily for 15 days); Arm C: CDDP + BCNU + SRT; or Arm D: CDDP + BCNU + ART. Patients on arms C and D received audiograms at baseline, and prior to the start of RT, and prior to cycles 3 and 6. Otologic toxicities were recorded at each visit. Results : 56% of patients had hearing loss at baseline. 13% and 50% of patients experienced worsening ototoxicity after 1 year of treatment in arms A and B vs. C and D, respectively, with 13% of those on arms C and D experiencing significant ototoxicity (≥ grade 3) at 6 months. Increasing age was associated with an increased risk of ototoxicity. Conclusions : Increased exposure to CDDP increases the risk of ototoxicity over time. Older patients are more susceptible to hearing loss with CDDP. The low proportion of patients with clinically significant ototoxicity suggests that baseline screening is unnecessary in GBM patients.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43476/1/11060_2005_Article_9049.pd

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Polyunsaturated Fatty Acids and Their Derivatives: Therapeutic Value for Inflammatory, Functional Gastrointestinal Disorders, and Colorectal Cancer

    Full text link
    Polyunsaturated fatty acids (PUFAs) are bioactive lipids which modulate inflammation and immunity. They gained recognition in nutritional therapy and are recommended dietary supplements. There is a growing body of evidence suggesting the usefulness of PUFAs in active therapy of various gastrointestinal (GI) diseases.In this review we briefly cover the systematics of PUFAs and their metabolites, and elaborate on their possible use in inflammatory bowel disease (IBD), functional gastrointestinal disorders (FGIDs) with focus on irritable bowel syndrome (IBS), and colorectal cancer (CRC). Each section describes the latest findings from in vitro and in vivo studies, with reports of clinical interventions when available

    A Conserved Secondary Structural Element in the Coding Region of the Influenza A Virus Nucleoprotein (NP) mRNA Is Important for the Regulation of Viral Proliferation - Fig 6

    Full text link
    <p><b>A.</b> (+) RNA5 motif with marked complementary region to anisense oligonucleotides. In green were marked differences in sequence between A/California/04_NYICE_E3/2009 strain and consensus sequence of M121. <b>B.</b> Effect of antisense oligonucleotides targeting M121 motif of scIAV A/California/04_NYICE_E3/2009 in cell line MDCK-HA. C—control; L—control with lipofectamine, R—positive control with ribavirin; N—negative control with oligonucleotide N.</p

    Lead ion cleavage of M121.

    Full text link
    <p>RNA was incubated with 1 mM Pb(OAc)<sub>2</sub>, 100 mM KCl and 5 mM MgCl<sub>2</sub>, 10 mM Tris-HCl pH 7 in time course: lanes 1–6 - 0, 1, 5, 15, 30 and 60 min, respectively. Lane 7—control reaction: M121 incubated in 100 mM KCl and 5 mM MgCl<sub>2</sub>, 10 mM Tris-HCl pH 7 for 60 min. Lane 8—RNase T1 ladder. Lane 9—formamide ladder.</p
    corecore