9 research outputs found

    Approaches in biotechnological applications of natural polymers

    Get PDF
    Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)

    Spatial and Temporal Hydrochemical Variation of a Third Order River Network in a Quasi Pristine Coastal Watershed, at Southern Bahia, Brazil

    Full text link
    ABSTRACT Rio da Serra watershed presents well preserved fragments of rain forest at the headwaters and small farms at middle and final stretches. These features allowed the study of fluvial hydrochemistry, under quasi pristine conditions. Sampling stations were established in order to represent the basin, and visited during dry, intermediate and wet periods. Obtained results are: temperature (22.1 – 28.6 °C); electric conductivity (34 – 52 µS/cm); dissolved oxygen (35 – 110%); pH (3.8 – 7.7); total suspended solids (1.1 – 20 mg/L); chlorophyll (1.0 – 9.2 µg/L); total N (74 – 580 µmol/L); particulate N (60 – 550 µmol/L); N-NO3 (0.1 – 9.3 µmol/L); dissolved organic N (4 -70 µmol/L); total phosphorous (5.3 – 47 µmol/L); particulate P (4.4 – 59 µmol/L); P-PO4 (0.1 – 0.7 µmol/L); dissolved organic P (0.01 – 2.0 µmol/L); silicate (30 -90 µmol/L); fecal coliforms (80 – 700 CFU/100mL). In seasonal terms dissolved oxygen, electric conductivity, nitrate and silicate concentrations were higher during the dry, whereas TSS was higher during the wet period. Seasonal differences of dissolved oxygen, temperature, pH and nitrate were also detected near wetlands areas. Along the basin results showed a distinction between headwaters and other sections, revealing a control of fluvial hydrochemistry by the preserved area, mostly for the dissolved organic N and P species and phosphate

    Walert: Putting Conversational Information Seeking Knowledge into Action by Building and Evaluating a Large Language Model-Powered Chatbot

    Full text link
    Creating and deploying customized applications is crucial for operational success and enriching user experiences in the rapidly evolving modern business world. A prominent facet of modern user experiences is the integration of chatbots or voice assistants. The rapid evolution of Large Language Models (LLMs) has provided a powerful tool to build conversational applications. We present Walert, a customized LLM-based conversational agent able to answer frequently asked questions about computer science degrees and programs at RMIT University. Our demo aims to showcase how conversational information-seeking researchers can effectively communicate the benefits of using best practices to stakeholders interested in developing and deploying LLM-based chatbots. These practices are well-known in our community but often overlooked by practitioners who may not have access to this knowledge. The methodology and resources used in this demo serve as a bridge to facilitate knowledge transfer from experts, address industry professionals' practical needs, and foster a collaborative environment. The data and code of the demo are available at https://github.com/rmit-ir/walert
    corecore