21 research outputs found

    Avian Influenza A (H5N1): Pandemic Potential and the Role of the Clinical Microbiology Laboratory

    No full text

    Characterization of Oral Yersinia enterocolitica Infection in Three Different Strains of Inbred Mice

    Get PDF
    Several studies have highlighted differences in the resistances of various mouse strains to intravenous (i.v.) infection with Yersinia enterocolitica. In particular, differences in resistance and immunological response between BALB/c and C57BL/6 mouse strains have been determined. Following i.v infection, C57BL/6 mice are more resistant to Y. enterocolitica than are BALB/c mice. However, because Y. enterocolitica is typically a food-borne pathogen, the oral route of infection more accurately reflects the natural route of infection. Therefore, it was of interest to ascertain if the differences in resistance between mouse strains observed for an i.v. infection can be recapitulated following an oral infection. C57BL/6j, BALB/cj, and 129X1/Svj mouse strains presented no differences in 50% lethal dose (LD(50)) following oral infection with Y. enterocolitica. Subsequent analysis of cytokine levels, bacterial colonization and immune cell populations following oral infection confirmed characteristics previously described following i.v. Y. enterocolitica infection. All tissues analyzed from each mouse strain demonstrated a polarized Th1 cytokine profile and inflammatory cell influx throughout a 7-day course of infection. This immune response was present in all tissues and increased as bacterial colonization progressed. The lack of a differing LD(50) phenotype and common trends in immunological response among the three mouse strains tested suggests that oral infection is a useful model for studying the host response to Y. enterocolitica infection

    The rovA Mutant of Yersinia enterocolitica Displays Differential Degrees of Virulence Depending on the Route of Infection

    Get PDF
    Yersinia enterocolitica is an invasive enteric pathogen that causes significant inflammatory disease. Recently, we identified and characterized a global regulator of virulence (rovA). When mice are infected orally with the rovA mutant they are attenuated by 50% lethal dose (LD(50)) analysis and have altered kinetics of infection. Most significantly, mice orally infected with the rovA mutant have greatly reduced inflammation in the Peyer's patches compared to those infected with wild-type Y. enterocolitica. However, we present data here indicating that when the rovA mutant bacteria are delivered intraperitoneally (i.p.), they are significantly more virulent than when delivered orally. The i.p. LD(50) for the rovA mutant is only 10-fold higher than that of the wild-type Y. enterocolitica, and there are significant inflammatory responses to the rovA mutant that are evident in the liver and spleen. Altogether, these data suggest that the RovA regulon may be required for the early events of the infection that occur in the Peyer's patches. Furthermore, these data suggest that the RovA regulon may be dispensable for Y. enterocolitica systemic disease and inflammatory responses if the Peyer's patches are bypassed

    Granzymes and Caspase 3 Play Important Roles in Control of Gammaherpesvirus Latency

    No full text
    Gammaherpesviruses can establish lifelong latent infections in lymphoid cells of their hosts despite active antiviral immunity. Identification of the immune mechanisms which regulate gammaherpesvirus latent infection is therefore essential for understanding how gammaherpesviruses persist for the lifetime of their host. Recently, an individual with chronic active Epstein-Barr virus infection was found to have mutations in perforin, and studies using murine gammaherpesvirus 68 (γHV68) as a small-animal model for gammaherpesvirus infection have similarly revealed a critical role for perforin in regulating latent infection. These results suggest involvement of the perforin/granzyme granule exocytosis pathway in immune regulation of gammaherpesvirus latent infection. In this study, we examined γHV68 infection of knockout mice to identify specific molecules within the perforin/granzyme pathway which are essential for regulating gammaherpesvirus latent infection. We show that granzymes A and B and the granzyme B substrate, caspase 3, are important for regulating γHV68 latent infection. Interestingly, we show for the first time that orphan granzymes encoded in the granzyme B gene cluster are also critical for regulating viral infection. The requirement for specific granzymes differs for early versus late forms of latent infection. These data indicate that different granzymes play important and distinct roles in regulating latent gammaherpesvirus infection

    Analytical Performance Determination and Clinical Validation of the Novel Roche RealTime Ready Influenza A/H1N1 Detection Set▿ †

    No full text
    The emergence of a novel pandemic human strain of influenza A (H1N1/09) virus in April 2009 has demonstrated the need for well-validated diagnostic tests that are broadly applicable, rapid, sensitive, and specific. The analytical performance and clinical validity of results generated with the novel Roche RealTime Ready Influenza A/H1N1 Detection Set using the LightCycler 2.0 instrument were characterized. Analytical performance was assessed by processing respiratory samples spiked with H1N1/09 and seasonal influenza A virus, a set of seasonal influenza A virus subtypes, and samples containing common viral and bacterial respiratory pathogens. The clinical validity of results was assessed in comparison to other assays by analyzing 359 specimens at three clinical sites and one reference laboratory. Direct sequencing was used to resolve samples with discrepant results. The assay detected virus concentrations down to <50 RNA copies per reverse transcription (RT)-quantitative PCR (qPCR). Various influenza A virus subtypes were covered. The analytical specificity was 100%. High clinical validity was demonstrated by the 99% positive agreement between seasonal influenza A viruses, 98% positive agreement between H1N1/09 viruses, and 88% agreement between negative results. The analytical sensitivity was compared to those of three other RT-qPCR assays and was found to be equivalent. The novel Roche RealTime Ready Influenza A/H1N1 Detection Set can be utilized on the widely used LightCycler platform. We demonstrate its usefulness for the rapid detection and surveillance of pandemic H1N1/09 influenza A virus infections
    corecore