6 research outputs found

    Return to work after acromioclavicular joint stabilization: a retrospective case control study

    Get PDF
    Background: Considering the epidemiology of acromioclavicular (AC) dislocation related to young and active patients, the impact on working capacity is highly relevant. The purpose of this study was to determine the capacity of work and time to return to work (RTW) after AC joint stabilization. We hypothesized that manual working patients show more restrictions returning to work. Methods: In this retrospective case series, pre- and posttraumatic working capacity of 54 patients (FU-rate 80.1%, FU time 23, range 18–45 month) stabilized in single TightRope technique was analyzed. Clinical outcome (DASH, Constant-Murley score) and complications were evaluated in addition. Results: Fifty one of 54 patients (94.5%) were returned to work at final follow-up. The median time to return was 13 (5–143) weeks. Manual working patients showed lower RTW-rates (91.2% vs. 100%; p = .151), longer RTW-time (15.5 vs. 6 weeks; p = .008), and more often persistent shoulder symptoms at work (55.9% vs. 5%; p < .001). Conclusion: After stabilization of AC joint dislocation, the majority of patients returned to work, needing substantial time to return. Manual working patients required more time and often suffer under persistent symptoms at work

    Zero-dose fluoroscopy-based close reduction and osteosynthesis of diaphyseal fracture of femurs

    No full text
    This paper presents a novel technique to create a computerized fluoroscopy with zero-dose image updates for computer-assisted fluoroscopy-based close reduction and osteosynthesis of diaphyseal fracture of femurs. With the novel technique, repositioning of bone fragments during close fracture reduction will lead to image updates in each acquired imaging plane, which is equivalent to using several fluoroscopes simultaneously from different directions but without any X-ray radiation. Its application facilitates the whole fracture reduction and osteosynthesis procedure when combining with the existing leg length and antetorsion restoration methods and may result in great reduction of the X-ray radiation to the patient and to the surgical team. In this paper, we present the approach for achieving such a technique and the experimental results with plastic bones

    Mobility Assessment of the Supraspinatus in a Porcine Cadaver Model Using a Sensor-Enhanced, Arthroscopic Grasper

    No full text
    Tendon mobility is highly relevant in rotator cuff surgery. Objective data about rotator cuff mobility is rare. Tendon mobility still needs to be evaluated subjectively by the surgeon. This study aims to establish a porcine animal model for mobility analysis of the supraspinatus. In this context, we introduce a sensor-enhanced, arthroscopic grasper (SEAG) suitable for objective intraoperative measurements of tendon mobility in clinical praxis. Tendon mobility of 15 fresh porcine cadaver shoulders with artificial rotator cuff tears was evaluated using the SEAG. Mobility characteristics (load-displacement curves, maximum load, stiffness) were studied and inter- and intraobserver agreement (intraclass correlation coefficient (ICC)) were tested. Factors with a potential adverse effect (plastic deformation and rigor mortis) were also evaluated. All shoulders showed characteristic reproducible load-displacement curves with a nonlinear part at the start, followed by a linear part. Mean maximum load was 28.6 N ± 12.5. Mean stiffness was 6.0 N/mm ± 2.6. We found substantial interobserver agreement (ICC 0.672) and nearly perfect intraobserver agreement (0.944) for maximum load measurement. Inter- (0.021) and intraobserver (0.774) agreement for stiffness was lower. Plastic deformation and rigor mortis were excluded. The animal model demonstrates reliable and in vivo-like measurements of tendon mobility. The SEAG is a reliable tool for tendon mobility assessment
    corecore