2,669 research outputs found

    A double peaked pulse profile observed in GX 1+4

    Get PDF
    The hard X-ray pulsar GX 1+4 was observed several times in the last few years with a pair of balloon-borne Xenon filled Multi-cell Proportional Counters (XMPC). In a balloon flight made on 22 March 1995, the source was detected in a bright state, the average observed source count rate being 8.0±0.2/s8.0\pm0.2/s per detector. X-ray pulsations with a period of 121.9±0.1121.9\pm0.1 s were detected in the source with a broad double peak pulse feature. When observed in December 1993 with the same instrument, the pulse profile of GX 1+4 showed a single peak. This change in the pulse profile to a double pulse structure in about 15 months indicates either activation of the opposite pole of the neutron star if the magnetic field is asymmetric or possibly a change in the beam pattern, from a pencil beam to a fan beam. Assuming a fan beam configuration, the pulse profile is used to find the inclinations of the magnetic axis and the viewing axis with the spin axis. The derived angles support the GINGA observations of a dip in the pulse profile which was resolved to have a local maximum in one of the observations and was explained with resonance scattering of cyclotron line energy photons by the accretion column (Makishima et al., \markcite{maki1988}, Dotani et al., \markcite{dotani1989}.). Compared to our previous observation of the same source with the same telescope (Rao et al., \markcite{rao1994}) a period change rate of 0.72±0.40s/yr0.72 \pm 0.40 s/yr is obtained which is the lowest rate of change of period for this source since its discovery. Average pulse fraction in the hard X-ray range is low (30%), consistent with its anti correlation with luminosity as reported by us earlier (Rao et al., \markcite{rao1994}) and the observed spectrum is very hard (power law photon index 1.67±0.121.67\pm0.12).Comment: 10 pages, to appear in A&

    X-ray properties of the microquasar GRS 1915+105 during a variability class transition

    Get PDF
    We present a detailed X-ray study of the microquasar GRS 1915+105 during a variability class transition observed in 2000 June with the PPCs of the Indian X-ray Astronomy Experiment. We supplement this observation with data from the RXTE archives. The source made a transition from a steady low-hard state to a regular oscillatory behaviour in the light curve known as bursts or class `rho' (Belloni et al. 2000) between 2000 May 11 and 17 and reverted back to the low-hard state on 2000 June 27. A gradual change in the burst recurrence time from about 75 s to about 40 s was observed which then increased to about 120 s during the ~ 40 days of class `rho'. The regular bursts disappeared from the X-ray light curves and the class transition was observed to occur within 1.5 hours on 2000 June 27 with the PPCs. A correlation is found between the observed QPO frequency at 5-8 Hz in the quiescent phase and the average X-ray intensity of the source during the class `rho'. We notice a strong similarity between the properties of the source during the class `rho' and those during the oscillatory phase of the observations of class `alpha'. From the timing and spectral analysis, it is found that the observed properties of the source over tens of days during the class `rho' are identical to those over a time scale of a few hundreds of seconds in the class `alpha'. Examining the light curves from the beginning of the RXTE/PCA and RXTE/ASM observations, it is found that the change of state from radio-quiet low-hard state to high state occurs through the X-ray classes `rho' and `alpha' which appear together during the state transition. It is further inferred that the source switches from low-hard state to the class `rho' through the intermediate class `alpha'.Comment: 10 pages with 9 figures, LaTex. To be appeared in MNRA

    Different types of X-ray bursts from GRS 1915+105 and their origin

    Get PDF
    We report the X-ray observations of the Galactic X-ray transient source GRS 1915+105 with the PPCs of the Indian X-ray Astronomy Experiment(IXAE) onboard the Indian satellite IRS-P3 during 1997 June - August, which have revealed the presence of four types of intense X-ray bursts. All the observed bursts have a slow exponential rise, a sharp linear decay, and they can broadly be put in two classes: irregular and quasi-regular bursts in one class, and regular bursts in another class. The regular bursts are found to have two distinct time scales and they persist over extended durations. There is a strong correlation between the preceding quiescent time and the burst duration for the quasi-regular and irregular bursts. No such correlation is found for the regular bursts. The ratio of average flux during the burst time to the average flux during the quiescent phase is high and variable for the quasi- regular and irregular bursts while it is low and constant for the regular bursts. We suggest that the peculiar bursts that we have seen are charact- eristic of the change of state of the source. The source can switch back and forth between the low-hard state and the high-soft state near critical accretion rates in a very short time scale. A test of the model is presented using the publicly available 13-60 keV RXTE/PCA data for irregular and regular bursts concurrent with our observations.Comment: 13 pages, 12 figures, Accepted in APJ, emulateapj style use

    Quasi-periodic oscillations discovered in the new X-ray pulsar XTE J1858+034

    Get PDF
    We report the discovery of low frequency quasi-periodic oscillations centered at 0.11 Hz in the newly discovered 221 s X-ray pulsar XTE J1858+034. Among about 30 known transient X-ray pulsars this is the sixth source in which QPOs have been observed. If the QPOs are produced because of inhomogeneities in the accretion disk at the magnetospheric boundary, the low frequency of the QPOs indicate a large magnetosphere for this pulsar. Both the Keplerian frequency model and the beat frequency model are applicable for production of QPOs in this source. The QPOs and regular pulsations are found to be stronger at higher energy which favours the beat frequency model. The magnetic field of the pulsar is calculated as a function of its distance. The energy spectrum is found to be very hard, consisting of two components, a cut-off power law and an iron fluorescence line.Comment: 6 pages including 4 figures. To appear in Astronomy and Astrophysic

    Quasi-periodic oscillations discovered in the new X-ray pulsar XTE J1858+034

    Get PDF
    We report the discovery of low frequency quasi-periodic oscillations centered at 0.11 Hz in the newly discovered 221 s X-ray pulsar XTE J1858+034. Among about 30 known transient X-ray pulsars this is the sixth source in which QPOs have been observed. If the QPOs are produced because of inhomogeneities in the accretion disk at the magnetospheric boundary, the low frequency of the QPOs indicate a large magnetosphere for this pulsar. Both the Keplerian frequency model and the beat frequency model are applicable for production of QPOs in this source. The QPOs and regular pulsations are found to be stronger at higher energy which favours the beat frequency model. The magnetic field of the pulsar is calculated as a function of its distance. The energy spectrum is found to be very hard, consisting of two components, a cut-off power law and an iron fluorescence line

    Detection of a Series of X-ray Dips Associated with a Radio Flare in GRS 1915+105

    Get PDF
    We report the detection of a series of X-ray dips in the Galactic black hole candidate GRS 1915+105 during 1999 June 6-17 from observations carried out with the Pointed Proportional Counters of the Indian X-ray Astronomy Experiment on board the Indian satellite IRS-P3. The observations were made after the source made a transition from a steady low-hard state to a chaotic state which occuered within a few hours. Dips of about 20-160 seconds duration are observed on most of the days. The X-ray emission outside the dips shows a QPO at ~ 4 Hz which has characteristics similar to the ubiquitous 0.5 - 10 Hz QPO seen during the low-hard state of the source. During the onset of dips this QPO is absent and also the energy spectrum is soft and the variability is low compared to the non-dip periods. These features gradually re-appear as the dip recovers. The onset of the occurrence of a large number of such dips followed the start of a huge radio flare of strength 0.48 Jy (at 2.25 GHz). We interpret these dips as the cause for mass ejection due to the evacuation of matter from an accretion disk around the black hole. We propose that a super-position of a large number of such dip events produces a huge radio jet in GRS 1915+105.Comment: 18 pages, 7 figures, Accepted for publication in Ap

    Ambipolar transport in solution-deposited pentacene transistors enhanced by molecular engineering of device contacts

    Get PDF
    We report ambipolar transport in bottom gold contact, pentacene field-effect transistors (FETs) fabricated by spin-coating and thermally converting its precursor on a benzocyclobutene/SiO2 gate dielectric with chemically modified source and drain electrodes. A wide range of aliphatic and aromatic self-assembled thiolate monolayers were used to derivatize the electrodes and all enhanced electron and hole currents, yet did not affect the observable thin film morphology. Hole and electron mobilities of 0.1–0.5 and 0.05–0.1 cm2 / V s are achieved, though the threshold for electron transport was \u3e80 V. These ambipolar FETs are used to demonstrate inverters with gains of up to 94

    On the origin of the various types of radio emission in GRS 1915+105

    Full text link
    We investigate the association between the radio ``plateau'' states and the large superluminal flares in GRS 1915+105 and propose a qualitative scenario to explain this association. We identify several candidate superluminal flare events from available monitoring data on this source and analyze the contemporaneous RXTE pointed observations. We detect a strong correlation between the average X-ray flux during the ``plateau'' state and the total energy emitted in radio during the subsequent radio flare. We find that the sequence of events is similar for all large radio flares with a fast rise and exponential decay morphology. Based on these results, we propose a qualitative scenario in which the separating ejecta during the superluminal flares are observed due to the interaction of the matter blob ejected during the X-ray soft dips, with the steady jet already established during the ``plateau'' state. This picture can explain all types of radio emission observed from this source in terms of its X-ray emission characteristics.Comment: Corrected typo in the author names, contents unchanged, accepted in Ap
    corecore