3 research outputs found

    Theory of the nodal nematic quantum phase transition in superconductors

    Get PDF
    We study the character of an Ising nematic quantum phase transition (QPT) deep inside a d-wave superconducting state with nodal quasiparticles in a two-dimensional tetragonal crystal. We find that, within a 1/N expansion, the transition is continuous. To leading order in 1/N, quantum fluctuations enhance the dispersion anisotropy of the nodal excitations, and cause strong scattering which critically broadens the quasiparticle (qp) peaks in the spectral function, except in a narrow wedge in momentum space near the Fermi surface where the qp's remain sharp. We also consider the possible existence of a nematic glass phase in the presence of weak disorder. Some possible implications for cuprate physics are also discussed.Comment: 9 page, 4 figures, an error in one of expressions corrected and a new author was added. New references and footnotes are added and this is the version to appear in PR

    The CMB Bispectrum, Recombination and Large Scale Fluctuations

    No full text
    corecore