1,764 research outputs found

    Metric Structure of the Space of Two-Qubit Gates, Perfect Entanglers and Quantum Control

    Get PDF
    We derive expressions for the invariant length element and measure for the simple compact Lie group SU(4) in a coordinate system particularly suitable for treating entanglement in quantum information processing. Using this metric, we compute the invariant volume of the space of two-qubit perfect entanglers. We find that this volume corresponds to more than 84% of the total invariant volume of the space of two-qubit gates. This same metric is also used to determine the effective target sizes that selected gates will present in any quantum-control procedure designed to implement them.Comment: 27 pages, 5 figure

    A hierarchy of SPI activities for software SMEs: results from ISO/IEC 12207-based SPI assessments

    Get PDF
    In an assessment of software process improvement (SPI) in 15 software small- and –medium-sized enterprises (software SMEs), we applied the broad spectrum of software specific and system context processes in ISO/IEC 12207 to the task of examining SPI in practice. Using the data collected in the study, we developed a four-tiered pyramidal hierarchy of SPI for software SMEs, with processes in the higher tiers undergoing SPI in more companies than processes on lower level tiers. The development of the hierarchy of SPI activities for software SMEs can facilitate future evolutions of process maturity reference frameworks, such as ISO/IEC 15504, in better supporting software development in software SMEs. Furthermore, the findings extend our body of knowledge concerning the practice of SPI in software SMEs, a large and vital sector of the software development community that has largely avoided the implementation of established process maturity and software quality management standards

    Antimicrobial antagonists against food pathogens; a bacteriocin perspective

    Get PDF
    peer-reviewedEfforts are continuing to find novel bacteriocins with enhanced specificity and potency. Traditional plating techniques are still being used for bacteriocin screening studies, however, the availability of ever more bacterial genome sequences and the use of in silico gene mining tools have revealed novel bacteriocin gene clusters that would otherwise have been overlooked. Furthermore, synthetic biology and bioengineering-based approaches are allowing scientists to harness existing and novel bacteriocin gene clusters through expression in different hosts and by enhancing functionalities. The same principles apply to bacteriocin producing probiotic cultures and their application to control pathogens in the gut. We can expect that the recent developments on bacteriocins from Lactic Acid Bacteria (LAB) described here will contribute greatly to increased commercialisation of bacteriocins in food systems.This work was funded by the Alimentary Pharmabiotic Centre, a research centre funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan. The authors and their work were supported by SFI (grant no. 12/RC/2273

    The study of a prokaryotic glycolytic enzyme

    Get PDF
    The overall objective of this project is to generate novel carbohydrate binding proteins for use in glycoprotein analysis which are amenable to large scale production. The approach used here is the modification of prokaryotic glycolytic enzymes. Their enzymatic activity will be eliminated while hoping they still retain their binding capabilities. These proteins will be immobilized onto different surfaces to generate advanced bioanalytical platforms which will have huge commercial potential in the field of glycoanalysis

    Evaluation of photografted charged sites within polymer monoliths in capillary columns using contactless conductivity detection

    Get PDF
    Capacitively coupled contactless conductivity detection (C4D) is presented as a novel and versatile means of visualising discrete zones of charged functional groups grafted onto polymer based monoliths. Monoliths were formed within 100 μm UV transparent fused silica capillaries and photografting methods were subsequently used to graft a charged functional monomer, 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS) onto discrete regions of the “generic” monolith using a photomask. Post-modification monolith evaluation involves scanning the C4D detector along the length of the monolith to obtain a profile of the exact spatial location of grafted charged functionalities with millimetre accuracy. The methodology was extended to the visualisation of several zones of immobilised protein (bovine serum albumin) using photografted azlactone groups to enable covalent attachment of the protein to the monolith at precise locations along its length. In addition, the extent of non-specific binding of protein to the ungrafted regions of the monolith due to hydrophobic interactions could be monitored as an increase in background conductivity of the stationary phase. Finally, the technique was cross-validated using fluorescence microscopy by immobilising green fluorescent protein (GFP) in discrete zones and comparing the profiles obtained using both complementary techniques

    Glycolytic enzymes - novel carbohydrate binding proteins for glycoprotein analysis

    Get PDF
    •The cloning, expression, purification and characterisation of recombinant prokaryotic glycolytic enzymes •The mutagenesis of prokaryotic glycolytic enzymes to generate novel recombinant carbohydrate binding proteins •The characterisation of the binding profile of the novel recombinant carbohydrate binding protein

    Lectin based glycoprotein analysis

    Get PDF
    Many of the biopharmaceutical therapeutics entering the market and currently in clinical trails are recombinant glycoprotein molecules, the glycan moieties of which have a significant impact on efficacy and immunogenicity. The cell culture techniques required to produce these glycoproteins often result in products that are heterogeneous with respect to glycan content. This inconsistency ultimately leads to increased production costs and restricts patient accessibility to these therapeutics. To overcome these difficulties novel analytical platforms facilitating rapid in-process monitoring and product quality control are essential. Work undertaken within the Centre for Bioanalytical Sciences (CBAS) seeks to exploit the microbial world as a source of novel biorecognition elements to produce such platforms
    • …
    corecore