163 research outputs found

    On the transition to turbulence of wall-bounded flows in general, and plane Couette flow in particular

    Full text link
    The main part of this contribution to the special issue of EJM-B/Fluids dedicated to Patrick Huerre outlines the problem of the subcritical transition to turbulence in wall-bounded flows in its historical perspective with emphasis on plane Couette flow, the flow generated between counter-translating parallel planes. Subcritical here means discontinuous and direct, with strong hysteresis. This is due to the existence of nontrivial flow regimes between the global stability threshold Re_g, the upper bound for unconditional return to the base flow, and the linear instability threshold Re_c characterized by unconditional departure from the base flow. The transitional range around Re_g is first discussed from an empirical viewpoint ({\S}1). The recent determination of Re_g for pipe flow by Avila et al. (2011) is recalled. Plane Couette flow is next examined. In laboratory conditions, its transitional range displays an oblique pattern made of alternately laminar and turbulent bands, up to a third threshold Re_t beyond which turbulence is uniform. Our current theoretical understanding of the problem is next reviewed ({\S}2): linear theory and non-normal amplification of perturbations; nonlinear approaches and dynamical systems, basin boundaries and chaotic transients in minimal flow units; spatiotemporal chaos in extended systems and the use of concepts from statistical physics, spatiotemporal intermittency and directed percolation, large deviations and extreme values. Two appendices present some recent personal results obtained in plane Couette flow about patterning from numerical simulations and modeling attempts.Comment: 35 pages, 7 figures, to appear in Eur. J. Mech B/Fluid

    Understanding the sub-critical transition to turbulence in wall flows

    Full text link
    Contrasting with free shear flows presenting velocity profiles with inflection points which cascade to turbulence in a relatively mild way, wall bounded flows are deprived of (inertial) instability modes at low Reynolds numbers and become turbulent in a much wilder way, most often marked by the coexistence of laminar and turbulent domains at intermediate Reynolds numbers, well below the range where (viscous) instabilities can show up. There can even be no unstable mode at all, as for plane Couette flow (pCf) or for Poiseuille pipe flow (Ppf) that currently are the subject of intense research. Though the mechanisms involved in the transition to turbulence in wall flows are now better understood, statistical properties of the transition itself are yet unsatisfactorily assessed. A review of the situation is given. An alternative to the temporal theory of the transition to turbulence in terms of chaotic transients in such globally subcritical flows is proposed, which invokes spatio-temporal intermittence and the theory of first order (thermodynamic) phase transitions.Comment: 15 pages, 7 figures; proceedings of the Conference and Workshop on Perspectives in Nonlinear Dynamics, Trieste, 200

    Turbulent patterns in wall-bounded flows: a Turing instability?

    Full text link
    In their way to/from turbulence, plane wall-bounded flows display an interesting transitional regime where laminar and turbulent oblique bands alternate, the origin of which is still mysterious. In line with Barkley's recent work about the pipe flow transition involving reaction-diffusion concepts, we consider plane Couette flow in the same perspective and transform Waleffe's classical four-variable model of self-sustaining process into a reaction-diffusion model. We show that, upon fulfillment of a condition on the relative diffusivities of its variables, the featureless turbulent regime becomes unstable against patterning as the result of a Turing instability. A reduced two-variable model helps us to delineate the appropriate region of parameter space. An {\it intrinsic} status is therefore given to the pattern's wavelength for the first time. Virtues and limitations of the model are discussed, calling for a microscopic support of the phenomenological approach.Comment: to appear in Europhysics Letters in a different forma

    Spatiotemporal perspective on the decay of turbulence in wall-bounded flows

    Full text link
    Using a reduced model focusing on the in-plane dependence of plane Couette flow, it is shown that the turbulent-to-laminar relaxation process can be understood as a nucleation problem similar to that occurring at a thermodynamic first-order phase transition. The approach, apt to deal with the large extension of the system considered, challenges the current interpretation in terms of chaotic transients typical of temporal chaos. The study of the distribution of the sizes of laminar domains embedded in turbulent flow proves that an abrupt transition from sustained spatiotemporal chaos to laminar flow can take place at some given value of the Reynolds number R_{low}, whether or not the local chaos lifetime, as envisioned within low-dimensional dynamical systems theory, diverges at finite R beyond R_{low}.Comment: 9 pages, 3 figures, published in 2009 as a Rapid Communication in Phys. Rev. E, vol. 79, article 025301, corrected to include erratum Phys. Rev. E 79, 039904. References to now published material have been updated. A note has been added pointing to recent related work by D. Barkley (arXiv:1101.4125v1

    On modelling transitional turbulent flows using under-resolved direct numerical simulations: The case of plane Couette flow

    Full text link
    Direct numerical simulations have proven of inestimable help to our understanding of the transition to turbulence in wall-bounded flows. While the dynamics of the transition from laminar flow to turbulence via localised spots can be investigated with reasonable computing resources in domains of limited extent, the study of the decay of turbulence in conditions approaching those in the laboratory requires consideration of domains so wide as to exclude the recourse to fully resolved simulations. Using Gibson's C++ code ChannelFlow, we scrutinize the effects of a controlled lowering of the numerical resolution on the decay of turbulence in plane Couette flow at a quantitative level. We show that the number of Chebyshev polynomials describing the cross-stream dependence can be drastically decreased while preserving all the qualitative features of the solution. In particular, the oblique turbulent band regime experimentally observed in the upper part of the transitional range is extremely robust. In terms of Reynolds numbers, the resolution lowering is seen to yield a regular downward shift of the upper and lower thresholds Rt and Rg where the bands appear and break down. The study is illustrated with the results of two preliminary experiments.Comment: 20 pages, 9 figures. Accepted on August 24, 2010, to appear in TCF
    • …
    corecore